THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
University Examination 2010

THIRD YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING SUPPLEMENTARY PAPER

ECE 2304: HYDRAULICS I

SERIES: APRIL/MAY 2010
TIME: 2 HOURS

Instructions:

Answer Question One and any other TWO questions.

QUESTION ONE

(a) The water supply to a gas water heater contracts from 10 mm in diameter at A (fig.) to 7 mm in diameter at B .

If the pipe is horizontal, calculate the difference in pressure between A and B when the velocity of the water at A is $4.5 \mathrm{~m} / \mathrm{s}$.
(b) This pressure difference operates the gas control through connections which are taken to a horizontal cylinder in which a piston of 20 mm diameter moves.

Ignoring friction and the area of the piston connecting rod, calculate the force on the piston.

QUESTION TWO

(a) A trapezoidal notch has a base of width L and each side makes an angle θ to the vertical. Deduce an expression for the discharge through the notch.
(10 marks)
(b) A 90° V-notch has a coefficient of discharge of 0.6.

Calculate the discharge when the observed head is 0.65 m above the bottom of the notch.
(10 marks)

QUESTION THREE

Calculate the value of the angle θ for a V-notch which is to discharge $0.41 \mathrm{~m} 3 / \mathrm{s}$ under a head of 0.6 m , assuming a coefficient of discharge of 0.6 .

QUESTION FOUR

The Kuttei's formula for C based on the analysis of the behavior of rivers is

$$
C=\frac{23+\frac{0.00155}{2}+\frac{1}{n}}{1+\left(23+\frac{0.00155}{2}\right) \frac{n}{\sqrt{m}}}
$$

When n has the same value as in Manning's formula.
Bazin's formula for C is

$$
C=\frac{86.9}{1+\frac{k}{\sqrt{m}}} \text { in SI units. }
$$

where k depends on the surface roughness and is given as 1.3.
For a channel which is trapezoidal in cross-section with a bottom width of 1.8 m and side sloes of 1 vertical to 2 horizontal, find the velocity of flow if the depth of water is 1.5 m and the slope is 0.57 m per Km .

QUESTION FIVE

A rectangular channel with a flat bed and width 5 m and maximum depth 2 m has a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$
The normal depth is 1.25 m .
Calculate the depth of flow in a section in which the bed rises 0.2 m over a distance of 1 m .
Assume frictional losses are negligible.
(20 marks)

