

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

University Examination 2010

THIRD YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2305: PUBLIC HEALTH ENGINEERING

SERIES: APRIL/MAY 2010

TIME: 2 HOURS

Instructions:

Answer Question **ONE** and any other **TWO** questions.

QUESTION ONE

- (a) Define the following water demand projection terms with respect to the preliminary design year:
 - (i) Initial year
 - (ii) Future year
 - (iii) Ultimate year

(6 marks)

- (b) State **THREE** sources of population growth rate data in Kenya. (6 marks)
- (c) Calculate the ultimate water demand (in M³/day) for a town in Kenya with the following National census data conducted in 1980. (4 marks)

Make the following assumptions:

- (i) The preliminary design was done in 1980.
- (ii) The population growth rate was 7.5% per annum.
- (iii) The general economy growth rate was 7.5%l per annum.

2010 – Department of Building & Civil Engineering	

Demand Type	Census Data (1980	Water use rate	
1. Urban population	635,000	62 litres/head/day	
2. Boarding schools	90,000 students	50 litres/head/day	
3. Day schools	65,000 students	25 litres/head/day	
4. Town hospitals			
Inpatients beds	40	400 litres/head/day 20 litres/head/day 20,000 litres/day	
Outpatients	120 per day		
5. Industries	3		

QUESTION TWO

- (a) State the **THREE** key decision making considerations for drinking water chlorination. (3 marks)
- (b) Name **TWO** common drinking water chlorine based chemicals used in most developing countries. (4 marks)
- (c) A rural water supply system has the following data:
 - Water supply demand of 20,000 m³/day.
 - Water storage tank (also used for chlorination) volume of 300m³.
 - (i) Determine the effective chlorination contact time (in minutes).
 - (ii) Discuss the chlorination effectiveness and suggest improvements.

(16 marks)

(6 marks)

(7 marks)

(10 marks)

QUESTION THREE

- (a) Define the following terms with respect to water flow in closed conduits.
 - (i) Frictional head loss
 - (ii) Hydraulic gradient
 - (iii) Velocity head
- (b) State the following equations (and describe all the parameters) for calculating the frictional head loss in pipes:
 - (i) Darcy-Weisbach equation
 - (ii) Hazen-Williams equation.
- (c) Calculate the frictional head loss (using the Hazen-Williams equation) for a water supply pipeline of the following data:
 - (i) Flow velocity = 1.6m/s
 - (ii) Nominal pipe diameter = 200mm
 - (iii) Pipeline length = 1000m
 - (iv) Hazen-Williams coefficient = 132

QUESTION FOUR

(a)	by use of a simplified diagram, illustrate the concept of the hydrologic water cycle. (8 ma			
(b)	State the mass balance equation for the water budget.			
(c)	Define the following terms:			
	(i) (ii)	Aquifer Safe yield of an aquifer.	(2 marks)	
(d)		ibe the logical methodology to determine whether the ground flow in an aquifer is laminar or not.	(10 marks)	
QUES	STION	FIVE		
(a)	State diseas	the THREE factors that influence the transmission of waterbases.	orne (3 marks)	
(b)		the group of bacteria that is normally used as an indicator of biological water quality.	f (2 marks)	
(c)	Name	FIVE parameters of chemical quality of drinking water.	(5 marks)	
(d)	Define the following terms:			
	(i) (ii) (iii) (iv)	Turbidity Total Maximum Daily Load (TMDL) of a pollutant BOD COD	(4 marks)	
(e)	Calcu	late the BOD ₅ for the following water sample:		
	The B	OD test for the water was set up by pipetting 5ml into each		

300ml bottles. For one pair of bottles, the test results were as follows: The initial dissolved oxygen (DO) was 7.5mg/l, and after 5 days of incubation at 20°C the final DO was 2.9mg/l. (Assume no BOD is associated with the dilution water.)