TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:
DIPLOMA IN MARINE ENGINEERING
EMR 2211: ENG MATHS IV.
END OF SEMESTER EXAMINATION
SERIES:MAY 2016
TIME: TWO HOURS
DATE:MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question ONE and any other TWO.
Do not write on the question paper.

Question ONE

(a) Find the integral of $y=(2 x+5)\left(x^{2}+5 x\right)^{7} \quad(4 \mathrm{mks})$
(b) A radar on Thika super highway is used to measure speeds of vehicles. The speeds are normally distributed with mean of $90 \mathrm{Km} / \mathrm{h}$ and standard deviation $10 \mathrm{Km} / \mathrm{h}$. Find the probability that a car picked at random has a speed greater than $100 \mathrm{Km} / \mathrm{h} \quad$ (4 mks)
(c) In how many ways can a committee of 5men and 6 women be chosen from a pool of 8 men and 10 women? (3mks)
(d) Using binomial expansion, determine the first five terms of the expansion: $(2-1 / x)^{8}$ hence use the expansion above to evaluate $(1.75)^{8}$
(e) Given the function $f(x, y)=2 x^{3}+6 x y^{2}-3 y^{3}-150 x$ obtain $f_{x}, f_{y y}$ and $f_{x y}$ (4mks)
(f) Determine the stationary points of the function $y=27 x-x^{3}$ and distinguish their nature (5 mks)
(g) Work out $\frac{1!}{1!3!} \quad(2 \mathrm{mks})$
(h) Find $\frac{d}{d}$ if $\mathrm{y}=\left(2 \mathrm{x}^{2}+6 \mathrm{x}\right)\left(2 \mathrm{x}^{3}+5 \mathrm{x}^{2}\right) \quad(4 \mathrm{mks})$

Question TWO

(a) Determine the critical points and locate any relative maxima, minima and saddle point of the function defined by $f(x, y)=2 x^{2}-2 x y+2 y^{2}-6 x$ (7mks)
(b) Use first principles to find derivative of $f(x)=x^{3}+x^{2} \quad(5 \mathrm{mks})$
(c) A trough of water is 8 m deep and its ends are in the shape of isosceles triangle with a width of 5 m and height 2 m . If water is being pumped into it at $6 \mathrm{~m}^{3} / \mathrm{sec}$, at what rate is the height changing if initial height is 120 cm ? (5 mks)
(d) If in a normal distribution mean= 50 and standard deviation is 15 find $\operatorname{pr}(50<x<70)(3 \mathrm{mks})$

Question THRE

(a) A variable X is normally distributed with a mean of 30 and standard deviation of 4 find
(i) $\mathrm{P}(\mathrm{x}<40)$
(ii) $\mathrm{P}(\mathrm{x}>21)$
(iii) $\mathrm{P}(30<\mathrm{x}<35)$
(b) A particle moves in a straight line such that its velocity VMs is given by :
$\mathrm{V}=32+4 \mathrm{t}-\mathrm{t}^{2}$ after t seconds.
Calculate;
(a) Its initial velocity
(2 marks)
(b) The acceleration when it comes to rest.
(4 marks
(c) the distance traveled in the seventh second.
(4 marks)

Question FOUR

(a) When a circular shield of bronze is heated over fire, its radius decreases at a rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. At what rate is the area of the shield increasing if the radius is 50 cm ? (5 mks)
(b) Find y ' if $y=\left(2 x^{3}-1\right)^{4}$ (4 mks)
(c) From a group of 7 men and 6 women, 5 people are to be selected. In how many ways can this be done so as to ensure that at least 3 men are included in this group (4 mks)
(d) Find integral of

$$
\begin{equation*}
\frac{10 x}{5 x^{2}-8} \tag{4mks}
\end{equation*}
$$

(e) Find the area enclosed by $y=2 x^{3}+4 x$ the x axes and the points $x=1$ and $x=2 \quad$ (3mks)

Question FIVE

(a) A blindfolded marksman finds that an on average he hits the target 4 out of 5 times. If he fires 4 shots, find the probability that he gets
(i.) More than 2 hits (4 mks)
(ii.) At least 3 misses (4 mks)
(b) Hospital records show that of the patients suffering from Cancer, 75% die. What is the probability that out of 6 randomly selected patients 4 will recover? (4 mks)
(c) If electricity power failure occur according to a poison distribution with an average of 3 failures every 20 weeks. Calculate the probability that there will be more than one failure during a particular week. (4 mks)
(d) A ball is thrown vertically upwards such that its height after t seconds is given by $h=4 t^{2}-16 t+20$. Find the maximum height the ball reaches $(4 \mathrm{mks})$

