

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS & PHYSICS

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING

AMA2151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES

TIME: 2HRS

DATE: APRIL / MAY 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE

a) (i) Differentiate from first principles f(t) = kt4

(3 Mks)

(ii) Given
$$x^3 + Y^3 - 3axy$$

(2Mks)

(iii) Find the gradient at the point (1, 1) on the curve

$$Y = \frac{(x^3 + 4x + 1)}{(x^2 + 2x + 3)}$$

(4 Mks)

b) (i) If
$$f(x) = 4x^3 - 2x^2 - 3x + 1$$
 find $f(1+b) - f(1)$

(3Mks)

- (ii) If box with sides of length x, y, z mm is expanding along the x and y sides at a rate of 2 and 3 mm per second but contracting along the side at a rate of 4mm per second. Find the rate of change of when x=y=10mm, z=20mm (4 Mks) volume
- (iii) If S= a sinwt where a and w in are constants prove that

$$\frac{ds}{dt} = \pm w \quad a^2 - s^2 \qquad \frac{d^2s}{dt^2} = -w^2s$$
(4Mks)

c) (i) Evaluate

$$I = f(2x^3 - 5x^2 + 6x - 9) dx$$
 (2Mks)

(ii) Determine
$$\int_{0}^{\frac{II}{2}}$$
 (Sinx – cosx)dx (2Mks)

- (iii) Sketch the graph $y=x^3+2x^2+x+1$ between x=-1 and x=2 and determine the area enclosed between the curve, the x-axii and between the x=-1and x=2
- d) Find the mean value of $y=3x^2+4x+1$ between x=-1 and x=2(2Mks)

QUESTION TWO

- a) Find
 - (i) $\lim_{n \to \infty} \frac{3n^2 7n 10000}{2n^2 + n 4}$

(3Mks)

(ii) Show that $\underline{\lim}_{x \to \infty} \frac{3n}{2n+1} = \underline{3}$

(3Mks)

(iii) Evaluate: Lim $\xrightarrow{2+x}$ $x \rightarrow 3-7x$

$$x \xrightarrow{\underline{z} + \underline{x}}$$
 3-72

(3Mks)

- b) (i) Determine algebraically, from first principles the gradient of the graph of $y=5x^2+2$ at the point p where x=-1.6(4Mks)

(ii) Investigate the statutory points on the graph of $y=x^2 e^{-x}$ and sketch the curve

(7Mks)

QUESTION THREE

- (I) Given that $h(x) = x^2$ -x find the values of
 - (i) h(10)

(2Mks)

(ii) h(t+1)

(2Mks)

(iii)h(5k)

(2Mks)

- (II) If f(x) = 7x and g(x) = x+3 and $fg : x \rightarrow y$ express as simply as possible the rule which maps x onto y. Find the values of p, q, r such that
 - i) $fg: 5 \rightarrow p$ (2Mks)
 - ii) $f g:10 \rightarrow q$ (2Mks)
 - iii) $fg:r \rightarrow 35$ (2Mks)
- b) (i) prove the identity $\cosh^2 x \sinh^2 x = 1$ from the definition (3Mks)
 - (ii) Prove that $sinh^{-1}x = Ln\{x + (1+x2)$ (3Mks)

QUESTION FOUR

a) (i) Find $\frac{1}{\sqrt{(x^2+2x+10)}}$ dx by completing the square and substitution of

$$x+1 = 3\sin \emptyset. (4Mks)$$

- (ii) Find I= $(a^2 \overline{x^2}) dx$ by putting $x = a \sin\emptyset$ (4Mks)
- b) (i) Integrate $\frac{1}{(x+1)^2(x+4)}$ (6 mks)
 - (ii) Find $I = x \sin x dx$ (3Mks)
 - (iii) If tanhx = 1/3 what is scchx? (3Mks)

QUESTION FIVE

- a) Evaluate
 - (i) $I = \int_{1}^{2} \int_{0}^{II} \int_{0}^{II} 3 + \sin \phi d\theta dr$ (3Mks)
 - (ii) $I = \int_{1}^{2} \int_{0}^{3} \int_{0}^{1} (p^{2}+q^{2}-r^{2}) dp dq dr$ (4Mks)
- b) Show that
 - (i) $V = (Ar^n + B/r^n) \cos(n\emptyset)$ Satisfies the equation

$$\frac{d^2v}{dr^2} + \frac{1}{r} \frac{dv}{dr} + \frac{1}{r^3} \frac{d^2v}{d\theta^2} = 0$$
 (6Mks)

(ii) If z = Sin(x+y) where $x = \mu^2 + V^2$ and $y = 2\mu v$ find $\frac{dz}{d\mu} \text{ and } \frac{dz}{dv}$ (7Mks)