

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS & PHYSICS

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN ELECTRICAL & ELECTRONIC ENGINEERING

AMA1151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES

TIME: 2HRS

DATE: APRIL / MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE

 a) Prove the following identities:- (i) Given that Sin(A+B) - Sin Sin3A = 3SinA-4Sin 3A 	n AcosB + CosA SinB prove that	(6Mks)
(ii) In triangle ABC, A=4.73 a	and $< c=42^{\circ}12'$ calculate the size of angle A(6)	Mks)
b) Express in polar co-ordinates (-	2, -3)	(5Mks)
c) Express $\frac{1}{(x+2)(x-1)^2}$ in	partial fractions	(6Mks)
d) Simplify $\frac{1}{(x^2 - a^2)}$	when $x=a \operatorname{cosec} \Theta$	(7Mks)

a)	a) A triangle ABC has AB=19cm, AC=16cm and $<$ ABC = 50 ⁰ . Find the remaining sides and angles. (8Mks)				
b)	Find the values of θ between 0^0 and 360^0 that satisfy the equation $5 = 4\cos^2\theta + 4\sin\theta = 0$	(5Mks)			
c)	(i) Prove that $tan \theta + cos \theta = sec \theta cosec \theta$	(3Mks)			
	(ii) In the right angled triangle ABC where C=12, b =5 and a=13 find sec B and cosec C	(5Mks)			
	QUESTION THREE				
a)	Differentiate from first principle $f(x) = 3x^2 + 6x - 3$	(4Mks)			
b)	Find the gradient of the curve $X = \frac{t}{1+t} \qquad y = \frac{t^2}{1+t} \qquad \text{at the point (1/2, 1/2)}$	(5Mks)			
c)	Differentiate the following expressions (i) $Y = (x^2 - 3) (x + 1)$ and simplify the result	(4Mks)			
	(ii) $Y = 2^{x_2}$	(3Mks)			
	(iii) $(3x+2)^4$	(3Mks)			
	QUESTIONS FOUR				
	a) If $(2-j)(3+j^2) = r(\cos\theta + j\sin\theta)$ 3-j4 Find r	(4 mks)			
	b) (i) Rationalize				
	$\frac{2-j3}{1+j2}$	(3mks)			
	(ii) If $(2 + j3) (3 - j4) = x + jy$ find x and y	(3Mks)			
	c) Given $\cos 3\theta + j\sin 3\theta = (\cos \theta + j\sin \theta)^3$ by demoivers theorem; expand the find $\tan 3\theta$ (4Mks)	he expression and hence			
	(ii) Find the fourth roots of $3 - j4$	(6Mks)			
a)	(i) Use the second derivative test to investigate the stationing values of the function xe ^{-x}	(5Mks)			
	(ii) In alternating voltage is given by $\mu = 20 \text{Sin 50t volts}$, where t is the time in seconds. Calculate the rate of = 0.01 s (3Mks)	change of voltage when t			
©Technical University of Mombasa		Page 2 of 3			

b)	(i) Investigate the stationery values of the function	
	$f(x) = x^3 - 3x^2 + 3x$ and sketch the graphs of $y = f(x)$	(5Mks)

(ii) Express $\frac{7x^2 - 18x - 7}{(x - 4)(2x^2 - 6x + 3)}$ in partial functions. (7Mks)