TECHNICAL UNIVERSITY OF MOMBASA

 \mathfrak{F} acuity of applied and health sciences Department of mathematics and physic UNIVERSITY EXAMINATION FOR:DIPLOMA IN MARINE ENGINEERING
EMR 2117: ENGINEERING MATHEMATICS II
Special/supplementary EXAMINATION
SERIES:MAY 2016
TIME:2HOURS
DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions
Answer question ONE(COMPULSORY) and any other TWO questions
Do not write on the question paper.

QUESTION ONE:

a)find the value of x given that thr following matrix is singular;

$$
\left(\begin{array}{cc}
x+7 & 4 \\
-3 & x
\end{array}\right)
$$

(3mks)
ii)use matrix method to solve the following pair of simultaneous equations;

$$
x+y=5
$$

$$
3 x-2 y=0 \quad(4 m k s)
$$

b)The angle of depression of a boat from the top of a vertical cliff 50 m high is 10°.find the distance of the boat from the foot of the cliff. (3 mks)
c) In triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$ and $\angle \mathrm{BAC}=50^{\circ}$.calculate BC . (3mks)
d) i) The radius of a circle centre O is 6 cm . A chord AB substends an angle 108° at the centre.find the length of AB. (4mks)
ii)If $\tan x=\cos x$, show that $\sin x=\frac{1 \pm \sqrt{ } 5}{2} \quad$ (5 mks)
e) A ship leaves Mombasa $\left(4^{0} \mathrm{~S}, 39^{0} \mathrm{E}\right)$ and sails due east to a point $\mathrm{K}\left(4^{0} \mathrm{~S}, 80^{\circ} \mathrm{E}\right)$ in the Indian ocean.calculate its speed in;
i) km / h
ii)knots
(8 mks)

Question TWO

a) Define trigonometric ratios (2 mks)
b) i) Determine the distance in km and in nautical miles between two points $\mathrm{P}\left(30^{\circ} \mathrm{N}, 45^{\circ} \mathrm{E}\right)$ and $\mathrm{Q}\left(30^{\circ} \mathrm{N}, 60^{\circ} \mathrm{W}\right)$ (5 mks)
ii) if the local time of London $\left(52^{\circ} \mathrm{N}, 0^{\circ}\right)$ is 12.00 noon, determine the local time of Nairobi $\left(1^{\circ} \mathrm{S}, 37^{\circ} \mathrm{E}\right)$ (3mks)
c) i)derive the cosine rule . (6 mks)
ii) the perimeter of a triangular field is 120 m . Two of the sides are 21 m and 40 m . Calculate the largest angle of the field. (4mks)

Question THREE

a) Prove the following identities
i) $\sin 2 A=\cot A \quad(3 \mathrm{mks})$ $1-\cos 2 A$
li) $\quad \cos 2 A-\cos 4 A=\operatorname{cosec}^{2} A-1 \quad(3 m k s)$ $\sin 4 A$
b)i)Given that $\cos 2 x=49 / 81$, determine the $\sin x$ without using tables (3mks)
ii) without using tables determine $\tan A$ given that $\tan (A-45)=1 / 3 \quad$ (3mks)
c)i) if $\tan A=2 \tan B=7$, without using tables determine $\tan (2 A-B) \quad$ (4 mks)
ii) Given $\cot (A-B)=8, \cot A=1 / 4$, determine without using tables $\cot B \quad$ (4mks)

Question FOUR

a)The distance $P Q$ across a river is to be determined. A point R is 200 m from P and the angles QPR and $P R Q$ are 81° and 75° respectively.Calculate the distance PQ . (4mks)
b) A ship starts from a point A on a bearing of 053° and travels up to Point C, if the bearing of A from C is 290°, find how far C is from A and the distance from B to $C \quad$ (5 mks)
c) In triangle $A B C, \angle A=41^{\circ}, \angle B=90^{\circ}$ and $A C=25 \mathrm{~cm}$, calculate the length $A B$ and $B C \quad$ (3 mks)
d)i) The position vector p of a point P is $\left[\begin{array}{l}3 \\ 6\end{array}\right]$ and the position vector q of a point Q is $-3 .\left[\begin{array}{l}3 \\ 2\end{array}\right]$. Find the
vector PQ and the position vector of the midpoint M of PQ
(4mks)
ii)Relative to the origin O, the points A and B have position vectors $a=\left\{\begin{array}{l}3 \\ 4\end{array}\right]$ and $b=\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ respectively. Given
that iand j are the unit vectors in the direction of x-axis and y-axis
respectively,express a,b and 2(a-3b) in terms of i and j . (4mks)

Question FIVE

a) In triangle $A B C, A B=6 C M, A C=7 C M$ and $\angle B A C=50^{\circ}$. Determine the area of the triangle $A B C$. (3mks)
b) Draw an isosceles triangle $A B C$ with the base angles of 40° and $A B=A C=8 \mathrm{~cm}$.
ii)locate the centroid C and the circumcentre O
ii)draw the circumcircle and measure the circumradius_
\qquad

(6mks)

c) Given triangle $A B C$ with $B C=6 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$ locate the orthocenter and measure $A C$.

4mks)
d)i)A chord 12 cm long is on a circle of radius 10 cm . Find the distance of the chord from the centre of the circle.
(3mks)
ii)Two chords PQ and RS of the same circle are 11 cm and 13 cm long respectively. if they meet at T in the circle and TR is 3 cm , find PT (4 mks)

