TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF HEALTH AND APPLIED SCIENCES
DEPARTMENT OF MATHS \& PHYSICS

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ELECTRICAL \& ELECTRONIC ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING

AMA2151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES
TIME:2HRS
DATE: APRIL / MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

QUESTION ONE

a) (i) Differentiate from first principles $f(\mathrm{t})=\mathrm{kt} 4$
(ii) Given $x^{3}+Y^{3}-3 a x y \quad$ find dy dx
(iii) Find the gradient at the point $(1,1)$ on the curve

$$
\begin{equation*}
Y=\frac{\left(x^{3}+4 x+1\right)}{\left(x^{2}+2 x+3\right)} \tag{4Mks}
\end{equation*}
$$

b) (i) If $f(x)=4 x^{3}-2 x^{2}-3 x+1$ find

$$
\begin{equation*}
f \frac{(1+\mathrm{b})-\mathrm{f}(1)}{\mathrm{b}} \tag{3Mks}
\end{equation*}
$$

(ii) If box with sides of length $\mathrm{x}, \mathrm{y}, \mathrm{z}$ mm is expanding along the x and y sides at a rate of 2 and 3 mm per second but contracting along the side at a rate of 4 mm per second. Find the rate of change of volume when $x=y=10 \mathrm{~mm}, \mathrm{z}=20 \mathrm{~mm}$ (4 Mks)
(iii) If $\mathrm{S}=\mathrm{a}$ sinwt where a and w in are constants prove that

$$
\begin{equation*}
\frac{\mathrm{ds}}{\mathrm{dt}}= \pm \mathrm{w} \sqrt{\mathrm{a}^{2}-\mathrm{s}^{2}} \quad \frac{\mathrm{~d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}=-\mathrm{w}^{2} \mathrm{~s} \tag{4Mks}
\end{equation*}
$$

c) (i) Evaluate

$$
\begin{equation*}
I=f\left(2 x^{3}-5 x^{2}+6 x-9\right) d x \tag{2Mks}
\end{equation*}
$$

(ii) Determine $\int_{\emptyset}^{\frac{I I}{2}}(\operatorname{Sin} x-\cos x) \mathrm{dx}$ (2Mks)
(iii) Sketch the graph $y=x^{3}+2 x^{2}+x+1$ between $x=-1$ and $x=2$ and determine the area enclosed between the curve, the x-axii and between the $x=-1 \quad$ and $x=2$ (4Mks)
d) Find the mean value of $y=3 x^{2}+4 x+1$ between $x=-1$ and $x=2$
(2Mks)

QUESTION TWO

a) Find (i) $\lim _{n \rightarrow \infty} \frac{3 n^{2}-7 n-10000}{2 n^{2}+n-4}$
(ii) Show that $\underline{\lim } \underline{3 n}=\underline{3}$
${\underset{x \rightarrow \infty}{ } \frac{3 n}{2 n+1} \quad 2, ~-~}_{2}$
(3Mks)
(3Mks)
(iii) Evaluate: $\operatorname{Lim} \underset{x \rightarrow \infty}{\stackrel{2+x}{\infty}} 3-7 x$
(3Mks)
b) (i) Determine algebraically, from first principles the gradient of the graph of
$y=5 x^{2}+2$ at the point p where $x=-1.6$
(4Mks)
(ii) Investigate the statutory points on the graph of $y=x^{2} e^{-x}$ and sketch the curve

QUESTION THREE

a) (I) Given that $h(x)=x^{2}-x$ find the values of
(i) $\mathrm{h}(10)$
(ii) $\mathrm{h}(\mathrm{t}+1)$
(iii) $\mathrm{h}(5 \mathrm{k})$
(II) If $f(\mathrm{x})=7 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+3$ and $f \mathrm{~g}: \mathrm{x} \rightarrow \mathrm{y}$ express as simply as possible the rule which maps x onto y. Find the values of p, q, r such that
i) $\quad f g: 5 \rightarrow p$
ii) $\quad f \mathrm{~g}: 10 \rightarrow \mathrm{q}$
iii) $\quad f \mathrm{~g}: \mathrm{r} \rightarrow 35$
b) (i) prove the identity $\cosh ^{2} \mathrm{x}-\sinh ^{2} \mathrm{x}=1$ from the definition
(3Mks)
(ii) Prove that $\sinh ^{-1} \mathrm{x}=\operatorname{Ln}\{\mathrm{x}+\sqrt{ }(1+\mathrm{x} 2)$
(3Mks)

QUESTION FOUR

a) (i) Find $\int \frac{1}{\sqrt{(\times 2+2 x+10)}} d x$ by completing the square and substitution of

$$
\begin{equation*}
\mathrm{x}+1=3 \operatorname{Sin} \emptyset \tag{4Mks}
\end{equation*}
$$

(ii) Find $I=\int \sqrt{ }\left(a^{2}-x^{2}\right) d x$ by putting $x=a \sin \emptyset$
b) (i) Integrate

$$
\begin{equation*}
\frac{1}{(x+1)^{2}(x+4)} \tag{6mks}
\end{equation*}
$$

(ii) Find $\quad I=x \sin x d x$
(3Mks)
(iii) If $\tanh x=1 / 3$ what is scchx?

QUESTION FIVE

a) Evaluate
(i) $\left.I=\int_{1}^{2} \int_{0}^{I I} \int_{0}^{I I} 3+\operatorname{Sin} \varnothing\right) \mathrm{d} \emptyset \mathrm{dr}$
(3Mks)
(ii) $\quad \mathrm{I}=\int_{1}^{2} \int_{0}^{3} \int_{0}^{1}\left(\mathrm{p}^{2}+\mathrm{q}^{2}-\mathrm{r}^{2}\right)$ dpdqdr
(4Mks)
b) Show that
(i) $\quad \mathrm{V}=\left(\mathrm{Ar}^{\mathrm{n}}+\mathrm{B} / \mathrm{r}^{\mathrm{n}}\right) \cos (\mathrm{n} \varnothing-\alpha)$

Satisfies the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} v}{\mathrm{dr}^{2}}+\frac{1}{\mathrm{r}} \frac{\mathrm{dv}}{\mathrm{dr}}+\frac{1}{\mathrm{r}^{3}} \frac{\mathrm{~d}^{2} \mathrm{v}}{\mathrm{~d} \theta^{2}} \quad=0 \tag{6Mks}
\end{equation*}
$$

(ii) If $z=\operatorname{Sin}(x+y)$ where $x=\mu^{2}+V^{2}$ and $y=2 \mu v$ find
dz and dz
$d \mu \quad d v$
(7Mks)

