

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS & PHYSICS

UNIVERSITY EXAMINATION FOR:

CERTIFICATE IN ELECTRICAL & ELECTRONIC ENGINEERING

AMA1151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: APRIL / MAY 2016 SERIES

TIME: 2HRS

DATE: APRIL / MAY 2016

Instructions to Candidates

You should have the following for this examination

Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

QUESTION ONE

a) Evaluate the following	
i) Cosec 17.92° (2Mks)	
ii) Sec 49^0 (2mks)	
iii) Cot 83 ⁰¹⁶ (2Mks)	
b) Express $\frac{11x + 12}{(2x+3)(x+2)(x-3)}$ (6Mks)	
c) Prove the following identities	
i) $I + \tan^2 \theta = \sec^2 \theta$ (3Mks)	
ii) In triangle PQR, QR = 3.5, RP = 4 and PQ = 5. Calculate the size of angle P and hence fi area of the triangle (5Mks)	nd the
d) Express (4, -3) in polar coordinates (4Mks)	
e) Differentiate from first principles $f(x)=x^2$ and find the value of the gradient of the curve at $x=3$ (6Mks)	3

©Technical University of Mombasa

QUESTION TWO

a)	Solve the triangle ABC, given $\langle c=67^0 a=16.40cm and b=11.80cm$	(8Mks)
b)	Draw up a table of values from which you plot a graph of $y=\cos\theta$ and $y=\sin\theta$	(4Mks)
c)	(i) Prove that $\frac{\sin^3 \theta + \sin \theta \cos^2 \theta = \tan \theta}{\cos \theta}$ (ii) Solve for θ the equation	(4Mks)
	$\sin^2 \Theta - 1.707 \sin \Theta \cos \Theta + 0.707 \cos^2 \Theta = 0$ Where $0 < \Theta < 360^0$	(4Mks)
	a) (i) Find the cube roots of 1 and show them on argand diagram	(6Mks)
	 b) (i) With aid of a diagram express (i) -5 + 4 in polar form (ii) 3 <300 in the form of a + jb 	(4mks) (4Mks)
	c) (i) Simply $\frac{4-j5}{2-j}$	(4mks)
	(ii) Determine $(3 - j2) (3 + j2)$	(2Mks)
	QUESTIONS FOUR	
	a) (i) Find from first principles $f'(x)$ when $f(x) = x$	(4mks)
	 a) (i) Find from first principles f' (x) when f(x) = x b) (i) Obtain the differential coefficient of 3x⁴ - 2x³ + x² - x+10 	(4mks) = 0 (2Mks)
	b) (i) Obtain the differential coefficient of $3x^4 - 2x^3 + x^2 - x + 10$ (ii) Find the equations of the tangent and normal to the curve	= 0 (2Mks)
	 b) (i) Obtain the differential coefficient of 3x⁴ - 2x³ + x² - x+10 (ii) Find the equations of the tangent and normal to the curve X² + y² x 3xy - 11 = 0 at the point x = 1, y = 2 c) Differentiate the following 	= 0 (2Mks) (6Mks)
	 b) (i) Obtain the differential coefficient of 3x⁴ - 2x³ + x² - x+10 (ii) Find the equations of the tangent and normal to the curve X² + y² x 3xy - 11 = 0 at the point x = 1, y = 2 c) Differentiate the following (i) X³ Sinx (ii) <u>4e^x</u> 	= 0 (2Mks) (6Mks) (2Mks)

a) Express the following in partial fractions (i)

 $\frac{1}{(x+2)(x-1)^2}$ (4Mks)

 $\frac{3x+1}{(x-1)(x^2+1)}$ (ii) (6Mks) Page **2** of **4**

©Technical University of Mombasa

- b) (i) Find the greatest or least value of the function $f(x) = x^2 + 4x + 3$ (4Mks)
 - (ii) 1000m of fencing is to be used to make a rectangular enclosure find the greatest possible area and the corresponding dimensions. (6Mks)