TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHS \& PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA1151 ENGINEERING MATHEMATICS 2

END OF SEMESTER EXAMINATION

SERIES: Aprill / MAY 2016 SERIES
TIME:2HRS
DATE: APRIL / MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student IDMathematical table, calculator, no mobile phone
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions. Do not write on the question paper.

QUESTION ONE

a) Evaluate the following
i) $\quad \operatorname{Cosec} 17.92^{0}$
(2Mks)
ii) $\quad \operatorname{Sec} 49^{\circ}$
(2mks)
iii) $\operatorname{Cot} 83^{016}$
(2Mks)
b) Express $\frac{11 \mathrm{x}+12}{(2 \mathrm{x}+3)(\mathrm{x}+2)(\mathrm{x}-3)}$
c) Prove the following identities
i) $I+\tan ^{2} \theta=\sec ^{2} \theta$
(3Mks)
ii) In triangle $\mathrm{PQR}, \mathrm{QR}=3.5, \mathrm{RP}=4$ and $\mathrm{PQ}=5$. Calculate the size of angle P and hence find the area of the triangle
(5Mks)
d) Express (4, -3) in polar coordinates
(4Mks)
e) Differentiate from first principles $f(\mathrm{x})=\mathrm{x}^{2}$ and find the value of the gradient of the curve at $\mathrm{x}=3$
(6Mks)

QUESTION TWO

a) Solve the triangle ABC , given $\angle \mathrm{c}=67^{\circ} \mathrm{a}=16.40 \mathrm{~cm}$ and $\mathrm{b}=11.80 \mathrm{~cm} \quad$ (8 Mks)
b) Draw up a table of values from which you plot a graph of $\mathrm{y}=\cos \theta$ and $y=\sin \theta$
c) (i) Prove that $\quad \sin ^{3} \theta+\sin \theta \cos ^{2} \theta=\tan \theta$

$$
\begin{equation*}
\cos \theta \tag{4Mks}
\end{equation*}
$$

(ii) Solve for θ the equation

$$
\begin{align*}
& \operatorname{Sin}^{2} \theta-1.707 \sin \theta \cos \theta+0.707 \cos ^{2} \theta=0 \\
& \text { Where } 0<\theta \quad<360^{0} \tag{4Mks}
\end{align*}
$$

QUESTION THREE

a) (i) Find the cube roots of 1 and show them on argand diagram (6 Mks)
b) (i) With aid of a diagram express
(i) $-5+4$ in polar form
(4mks)
(ii) $3<300$ in the form of $\mathrm{a}+\mathrm{jb}$
(4Mks)
c) (i) Simply $\frac{4-\mathrm{j} 5}{2-\mathrm{j}}$
(ii) Determine $(3-\mathrm{j} 2)(3+\mathrm{j} 2)$
(2Mks)

QUESTIONS FOUR

a) (i) Find from first principles $f^{\prime}(\mathrm{x})$ when $f(\mathrm{x})=\mathrm{x}$
(4mks)
b) (i) Obtain the differential coefficient of $3 \mathrm{x}^{4}-2 \mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{x}+10=0 \quad$ (2Mks)
(ii) Find the equations of the tangent and normal to the curve $X^{2}+y^{2} x 3 x y-11=0$ at the point $x=1, y=2$
c) Differentiate the following
(i) $\quad X^{3} \operatorname{Sin} x$
(2Mks)
(ii) $\frac{4 e^{x}}{\operatorname{Sin}^{x}}$
(2Mks)
(iii) $\operatorname{Tan}(4 x+1)$
(4Mks)

QUESTION FIVE

a) Express the following in partial fractions
(i)

$$
\begin{equation*}
\frac{1}{(x+2)(x-1)^{2}} \tag{4Mks}
\end{equation*}
$$

(ii)

$$
\frac{3 x+1}{(x-1)\left(x^{2}+1\right)}
$$

b) (i) Find the greatest or least value of the function $f(\mathrm{x})=\mathrm{x}^{2}+4 \mathrm{x}+3 \quad$ (4Mks)
(ii) 1000 m of fencing is to be used to make a rectangular enclosure find the greatest possible area and the corresponding dimensions. (6 Mks)

