

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

SMA 2480: COMPLEX ANALYSIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME:2 HOURS

DATE: 2016

PAPER B

Instructions to Candidates You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) Evaluate $\lim_{\Delta z \to i} \frac{z^{10} + 1}{z^6 + 1}$

(6 marks)

b) Given that
$$z_1 = 2 + i$$
, $z_2 = 3 - 2i$, $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ evaluate

i)
$$|3z_1 - 4z_2|$$
 (2 marks)

ii)
$$\left|\frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i}\right|^2$$
 (3 marks)

c) Prove that if
$$\lim_{z \to z_0} f(z)$$
 exists, then the limit is unique (6 marks)

- d) Define an analytic function (2 marks) e) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and obtain the Residues at each point (5 marks)
- f) Show that if two images of two curves under a conformal mapping are orthogonal, then those curves must be orthogonal then those curves must be orthogonal (6 marks)

QUESTION TWO

a) State and Prove the Cauchy's Integral Theorem (12 marks)

b) Evaluate
$$\iint_{c} \frac{2z-1}{z(z+1)(z-3)} dz$$
 where c is the circle $|z|=2$ (8 marks)

QUESTION THREE

- a) State and prove the Cauchy Riemann Equations (10 marks)
- b) Obtain the Isolated singular points , $\operatorname{Re} s \{f(z), a\}$ of the function

$$f(z) = \frac{1}{(z-3)(z+1)}$$
 (6 marks)

c) Show that $e^{iz} = \cos z + i \sin z$ (4 marks)

QUESTION FOUR

a) State and Prove the Residue Theorem (10 marks) b) Given that $\lim_{z \to z_0} f(z) = A$ and $\lim_{z \to z_0} g(z) = B$. Prove that $\lim_{z \to z_0} |f(z) + g(z)| = A + B$ (10 marks)

QUESTION FIVE

a) Given that $F(t) = \cos at$ obtain $L\{\cos at\}$ (15 marks)

b) Evaluate
$$\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2 - 2z + 4}$$
 (5 marks)