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Instructions to Candidates
You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions
Do not write on the question paper.

QUESTION ONE (COMPULSORY)
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i) 1 2| 3 4 |z z (2 marks)

ii)
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(3 marks)

c) Prove that if
0

lim ( )
z z

f z


exists, then the limit is unique (6 marks)

d) Define an analytic function (2 marks)

e) Determine the poles of the function
2

2
( )

( 1) ( 2)

z
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
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and obtain the Residues at

each point (5 marks)

f) Show that if two images of two curves under a conformal mapping are orthogonal , then
those curves must be  orthogonal then those curves must be orthogonal (6 marks)

QUESTION TWO

a) State and Prove the Cauchy’s Integral Theorem (12 marks)

b) Evaluate
2 1

( 1)( 3)c

z
dz

z z z


  where c is the circle | | 2z  (8 marks)

QUESTION THREE

a) State and prove the Cauchy Riemann Equations (10 marks)

b) Obtain the Isolated singular points ,  Re ( ),s f z a of the function

1
( )

( 3)( 1)
f z

z z

 

(6 marks)

c) Show that cos sinize z i z  (4 marks)



QUESTION FOUR

a) State and Prove the Residue Theorem (10 marks)

b) Given that
0

lim ( )
z z

f z A


 and
0
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z z
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
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(10 marks)

QUESTION FIVE

a) Given that ( ) cosF t at obtain  cosL at (15 marks)

b) Evaluate
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(5 marks)


