TECHNICAL UNIVERSITY OF MOMBASA

SMA 2370 CALCULUS IV
2015/2016
END OF SEMESTER TWO YEAR THREE EXAMINATION FOR THE DEGREE OF BACHELOR OF CIVIL AND MECHANICAL ENGINEERING

QUESTION ONE (30MARKS) COMPULSORY

a) If $\phi=x^{2} y z^{3}$ and $A=x z i-y^{2} j+2 x^{2} y k$, find
i. $\quad \nabla \phi$
ii. $\operatorname{Div}(\phi A)$
iii. $\operatorname{Curl}(\$ A)$
b)
i. Find the directional derivative $U=2 x^{3} y-3 y^{2} z$ at $P(1,2,-1)$ in a direction toward $Q(3,-1,5)$
ii. In what direction from P is the directional derivative maximum? (1mk)
iii. What is the magnitude of the maximum directional derivative (2mks)
c) Identify the surface generated by the equation $r^{2}-4 r \cos \vartheta=14$
d) Sketch the region R in the $x y$ - plane bounded by $y=x^{2}, x=2, y=1$
e) Evaluate the double integral $\iint\left(x^{2}+y^{2}\right) d x d y$
f) Evaluate $\int_{(0,1)}^{(1,2)}\left(x^{2}+y^{2}\right) d x d y$

QUESTION TWO (2OMARKS)

a) Evaluate $\int_{c} A . . d r$ from $(0,0,0)$ to $(1,1,1)$ along the following paths if

$$
\begin{equation*}
A=\left(3 x^{2}-6 y z^{2}\right) i+(2 y+3 x z) j+\left(1-4 x y z^{2} k\right) \tag{5mks}
\end{equation*}
$$

i. $\quad x=t, y=t^{2}, z=t^{3}$
ii. The straight lines from $(0,0,0)$ to $(0,0,1)$ then to $(1,1,1) \quad$ (12 mks)
iii. The straight line joining $(0,0,0)$ and $(1,1,1)$

QUESTION THREE (20MARKS)

a) Verify green's theorem in the plane for $\int_{c}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y$ where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$
(20mks)

QUESTION FOUR (20MARKS)

a) Evaluate $\iint r . n d s$ where s is the closed surface.
b) Prove that $F=\left(2 x z^{3}+6 y\right) i+(6 x-2 y z) j+\left(3 x^{2} z^{2}-y^{2}\right)$ is a conservative force field.
c) Find the directional derivative of $F=x^{2} y z^{3}$ along the curve $x=e^{-u}, y=2 \sin u+1, z=u-\cos u$ at the point where $u=0$

QUESTION FIVE (20MARKS)

a) Given that $f(x, y)=2 x^{3}+3 x y^{2}$ find

$$
\begin{array}{rr}
\text { i. } & f_{x x} \\
\text { ii. } & f_{x y} \\
\text { iii. } & f_{y y}
\end{array}
$$

b) Find the equation for the tangent plane to the surface $x^{2} y z+3 y^{2}=2 x z^{2}-8 z$ at the point $(1,2,-1)$
c) Find the shortest distance from the origin to the hyperbola $x^{2}+8 x y+7 y^{2}=225, z=0$

