

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

MECHANICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE

EMG 2414: Numerical Methods for Engineers

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of Choose No questions. AttemptChoose instruction. **Do not write on the question paper.**

Question ONE

(a) Using	Cramer's Rule	solve the linear	system of equations
(a) comg	Cramer 5 reare	sorre the miteur	System of equations

2x + y = 7	(5 Marks)
3x - 4y = 5	(5 IVIAI KS)

(b) Solve the following system of equations using Gauss elimination method

$2x_2 + x_3 = -8$	
$x_1 - 2x_2 - x_3 = 0$	(5 Marks)
$-x_1 + x_2 + 2x_3 = 3$	
(c) Let $A = \begin{bmatrix} 7 & 10 \\ 1 & -2 \end{bmatrix}$, find the Eigen values and the corresponding Eigen vectors of A	
	(5 Marks)

(d) Find f'(3) using the Newton's backward difference formula

x	1	1.5	2	2.5	3
f(x)	-1.5	-2.875	-3.5	-2.625	0.5

(e) Obtain a divided difference table for the following data

	3	2	0	-1	x
(5 marks)	12	1	3) -8	f(x)

(f) Approximate the definite integral

 $\int_{0} \sqrt{1 + x^2} \, dx$ Using the trapezoidal rule correct to 4 decimal places using $\Delta x = 0.2$

Question TWO

(a) Consider $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$

Find i) A^2 ,

ii) Eigen values and corresponding Eigen vectors of A^2 , (7 Marks)

(b) Use Euler's method to numerically integrate dy/dx = -2x³ + 12x² - 20x + 8.5 from x = 0 to x = 1 with a step size of 0.5 the initial condition at x = 0, is y = 1
(c) Using forward difference formula, estimate f'(x) of f(x) = -0.1x⁴ - 0.15x³ - 0.5x² - 0.25x + 1.2 at x = 0.5 using a step size of h = 0.5
(6 Marks)

Question THREE

(a) If $y = x^3 - x^2 + x - 1$, calculate the values of y for x = 0,1,2,3,4,5 and form the Backward difference table. (7 Marks)

(b) The table below shows data for $f(x) = 0.2 + 25x^2 - 200x^2 + 675x^3 - 900x^4 + 400x^5$ with unequally spaced values.

x	f(x)
0	0.2
0.12	1.309729
0.22	1.305241
0.4	2.456
0.54	3.507297
0.7	2.363
0.8	0.232

Using the trapezoidal rule for unequally spaced values, find $\int_{0.8}^{0.8} f(x) dx$ (7 marks)

©Technical University of Mombasa

Page 2 of 4

(5 marks)

(c) Using Gaussian Elimination, Solve the system of linear equations

$$8x_1 + 5x_2 + 11x_3 = 30$$

- $x_1 - 4x_2 + 2x_3 = 3$
(6 marks)
 $2x_1 - x_2 + 5x_3 = 12$

Question FOUR

(a) Show that the second divided difference of
$$f(x) = \frac{1}{x}$$
, Using the points (a, b, c) is $\frac{1}{abc}$
(7 marks)

(b) (i) State Lagrange's formula of interpolation using unequal intervals. (2 marks)

(ii)	Using Lagrange's interpolation formula, find the value of y corresponding to	
x=3 f	rom the table below.	(5 marks)

(c) Compute f'(2.0) using backward difference table from the following tabular data.

x	1.4	1.6	1.8	2.0
f(x)	4.0552	4.9530	6.0496	7.3981

Question FIVE

- (a) (i) State the formula of trapezoidal rule
- (ii) A curve passes through $\{(0,1), (0.25, 0.9412), (0.5, 0.8), (0.75, 0.64), (1, 0.5)\}$
- Find $\int f(x)dx$ by trapezoidal rule. (6 marks)
- (iii) How can the accuracy of the trapezoidal rule be increased? (2 marks)

(b) Find an approximate value of $\log_e 5$ by approximating $\int_{0}^{5} \frac{1}{4x+5} dx$ using Simpson's $\frac{1}{3}$ rule of integration using n = 10 equal sub- intervals. (10 marks)

©Technical University of Mombasa

(6 marks)

(2 marks)