TECHNICAL UNIVERSITY OF MOMBASA

AMA 5208 TIME SERIES EXAM

INSTRUCTIONS: ANSWER ANY THREE QUESTIONS

QUESTION ONE [20 MARKS]

a) State and explain three reasons why we need to study the trend of a time series

[6 marks]

b) The sales of a company in millions of shillings for 1975 to 1979 is given below.

Year(t)		1975	1976	1977	1978	1979
Sales(Xt)		65	92	132	190	275
i. Fit the trend function $X_t = ab^t$						[7 marks]

ii. Compute the trend values and estimate the sales for the year 1980(2 marks)

c) Using the method of 3-selected points fit the logistic curve

$$X_t = \frac{k}{1 + e^{a+bt}} \qquad k \neq 0, b < 0 \qquad [5 marks]$$

d)

- a) Define a positive definite function for $x \in X$ [2marks]
- b) Show that the covariance function of the stationery time series {X_t} is positive definite [4 marks]

QUESTION TWO [20 MARKS]

- c) How would you distinguish between MA(1) and AR (1) processes [2 marks]
- d) Show that the covariance function of the stationery time series {X_t} is positive definite [4 marks]
- e) Let {X_t} be a moving average process of order 2 given by $X_t = e_t + {}_{\#} e_{t-2}$ where { e_t } is WN (0, 1). Compute the variance of the sample mean $\frac{X_1 + X_2 + X_3 + X_4}{4}$ when ${}_{\#} = 0.8$ and when [6marks]
- f)
- Let $= X_t = e^{i t} = \cos t + i \sin t$. Let $a_j = \frac{1}{2m+1}$, $\forall j \in [-m,m]$. Show that $Y_t = \sum_{j=-m}^m a_j X_{t-j}$ can be expressed as $Y_t = \frac{1}{2m+1} \frac{\sin(\frac{2m+1}{2})}{\sin(\frac{1}{2})} e^{i t}$ [8marks]

QUESTION THREE [20 MARKS]

- a) Consider a process $Y_t = P_t + e_t$ Where P_t is the permanent component and is e_t the transitory component. Suppose that the e_t are independent with mean 0 and variance \uparrow_e^2 . Further suppose that the e_t satisfies $P_t = P_{t-1} + a_t$ where the a_t are independent , mean 0 variance \uparrow_a^2 and independent of the e_t . Find the ACF of $W_t = Y_t - Y_{t-1}$. What can you say about the ACF based on its ACF. [5 MARKS]
- b) Consider the MA(1) model $Y_t = e_t + 0.6e_{t-1}$. Write this model in the form

$$Y_t = e_t + \sum_{j=1}^{\infty} f_j Y_{t-j}$$
, that is find an explicit formula for the f_j [5 MARKS]

- c) Consider the MA(2) process $Y_t = + e_t 1.3e_{t-1} + 0.6e_{t-2}$ where e_t are white noise process with $\uparrow^2 = 1.8$
 - a) Find the variance, autocovariance function and the ACF of Y_t [6 MARKS]
 - b) Check whether this process is invertaible [2 marks]
- d) Suppose that Y_t is a stationary process. Show that the process of the first differences $\{W_t\}$ given by $W_t = Y_t Y_{t-1}$ is also a stationary process. [2 marks]

QUESTION FOUR [20 MARKS]

Consider the AR(1) process $X_t = \Gamma X_{t-1} + e_t$ for $|\Gamma| < 1$.

- a) By successive replacements of the X_i 's in the process show that the process converges to an infinite moving average process of white noise. [11marks]
- b) Show that the autocorrelation function for this process is given by $r(h) = r^{h}$ [9 marks]