TECHNICAL UNIVERSITY OF MOMBASA

AMA 5204 STOCHASTIC PROCESSES

INSTRUCTIONS: ANSWER ANY THREE QUESTIONS

QUESTION ONE [20 MARKS]

a) Define the following terms as used with Markov Chains

i)	Periodic State	[1 mark]
ii)	Ergodic State	[1 mark]
iii)	Absorbing state	[1 mark]

b) Let p_{ik}^n be the probability of moving from E_i to E_k in n steps regardless of the

number of entrances into E_k prior to n and f_{jk}^n be the probability of entering E_k from E_j in n steps for the first time, show that there exits a relationship between these probabilities given by $P(s) = \frac{1}{1 - F(s)}$ [4 marks]

c) Classify the states for this infinite Markov Chain [8 marks]

[E_1	E_2	E_3	E_4	E_5]
E_1	$\frac{1}{4}$	$\frac{3}{4}$	0	0	0	
E_2	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	
E_3	$\frac{1}{4}$	0	0	$\frac{3}{4}$	0	
E_4	$\frac{1}{4}$	0	0	0	$\frac{3}{4}$	
.	•	•	•		•	
L.		•	•	•	•	.]

QUESTION TWO [20 MARKS]

a) Suppose that $p_j = p_r(z = j)$ forms a geometric series $p_j = br^{j-1}$ j = 1,2,...

where 0 < r < 1 and 0 < b <1-r while $p_0 = 1 - \sum_{j=1}^{\infty} p_j$

i) Find the corresponding p.g.f and the mean [5 marks]

ii) Show that the equation s = p(s) has its only positive roots 1 and

$$s = \frac{1 - (r+b)}{r(1-r)}$$
[5 marks]

b) Consider a series of Bernouli trials with probability of success p. Suppose that

X denotes the number of failures following the first success and Y the number of failures following the first success and preceding the second success

i) Using the bivariate p.g.f obtain Variance of X and the Variance of Y

[6	marks]	
----	--------	--

ii) Show that the X and Y are independent [4 marks]

QUESTION THREE[20 MARKS]

Consider a process whose difference equation is given by

 $p'_{n}(t) = -\} p_{n}(t) + \} p_{n-1}(t)$ $n \ge 1$ and $p'_{o}(t) = -\} p_{o}(t)$ n = 0. Suppose the initial

condition are $p_n(0) = 1$ for n = 0 and 0 otherwise ,

- a) Obtain the probability generating function of this process [9marks]
- b) What is the probability that the population is of size n at time t i.e $p_n(t)$

[5 marks]

c) Find the expected value and the variance of n.i.e $p_n(t)$ [6marks]

QUESTION FOUR [20 MARKS]

a) Using the probability generating function find the mean and variance of a distribution defined by $p_r{X = k} = pq^k$ for p+q = 1 and k = 0,1,2,...

[6 marks]

b) A certain kind of nuclear particle splits into 0,1 or 2 particles with probability

 $\frac{1}{4}, \frac{1}{2} \, \, and \, \, \frac{1}{4}$ respectively and then dies. The individual particles act

independently of each other. Given a particle, let z_1 , z_2 and z_3 denote the number of particles in the first, second and third generations . Find (i)

$$p_r[z_2 > 0]$$
 (ii) $p_r[z_3 = 0]$ [7 marks]

- c) In a certain process , the probability of n offspring from one ancestor is geometric with probability p
 - Find the range of values for which the process will die out with probability one. [3 marks]
 - ii) For p outside this range, find the probability of extinction [2 marks]
 - iii) If p is chosen so that the probability of a process never dies out is0.999, what is the probability that an individual will have no offspring[2 marks]

QUESTION FIVE [20 MARKS]

- a) Let $X_i, i = 1, 2, ...$ be identically and independently distributed random variables with $P\{X_i = k\} = p_k$ and p.g.f, $p(s) = \sum_k p_k S^k$ for i = 1, 2, Let $S_N = X_1 + X_2 + ... + X_N$ where N is a random variable independent of the $X_i^{\prime s}$. Let the distribution of N be given by $Pr\{N = n\} = g_n$ and the p.g.f of N be $G(s) = \sum_n g_n S^n$, Show that the p.g.f H(s) of S_N is given by $H(s) = \sum_j p_r \{S_N = j\}S^j = G[p(s)]$ [10 marks]
- b) Let X have a p.d.f $P\{X = k\} = p_k, k = 0, 1, 2, ...$ with p.g.f $p(s) = \sum_{k=0}^{\infty} p_k S^k$
 - and $W(s) = \sum_{k=0}^{\infty} q_k S^k$. Show that $W(s) = \frac{1 p(s)}{1 s}$ if $q_k = p_r \{X > k\}$ and $W(s) = \frac{p(s)}{1 - s}$ if $q_k = p_r \{X \le k\}$ for k = 0,1,2,...

[10 marks]