

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES:MAY 2016

TIME: 3 HOURS

DATE: MAY

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of five questions. Attempt any three.

Do not write on the question paper.

Question ONE

a. Let $x_1, x_2, ..., x_n$ be independently identically distributed bin(1, p) random variable. Find a most H_0 : $p = p_0$

powerful size Γ for H_0 ; $p=p_0$ where p_0 and p_1 are specified $(p_1>p_0)$ (7 marks)

- b. Show that the 1 parameter exponential family $f(x;_{\#}) = \exp\{\Theta(_{\#})T(x) + D(_{\#}) + S(x)\}$ has a Monotone Likelihood Ratio. (5 marks)
- c. Let the vector of random variables $x=(x_1,x_2,...,x_n)$ have the probability mass function $f(x;_{_{\it I\! I}})$ where $\{f(x;_{_{\it I\! I\! I}}),_{_{\it I\! I\! I}}\in\Omega\}$ have a monotone likelihood ratio T(x) . Show that for testing

$$H_0: {}_{\textit{"}} \leq {}_{\textit{"}} 0 \text{ against } H_1: {}_{\textit{"}} > {}_{\textit{"}} 0 \text{ any test of the form } \mathbb{W}(x) = \begin{cases} 1 & \textit{if} & T(x) > t_0 \\ \in & \textit{if} & T(x) = t_0 \text{ has a non-} \\ 0 & \textit{if} & T(x) < t_0 \end{cases}$$

decreasing power function and is uniform most powerful test. (8marks)

d. Define a consistent test (4 marks)

e. Define a uniformly most powerful test (6marks)

Question TWO

- a. Show that if a sufficient statistics T exists for the family $\{f(x;_{"}),_{"} \in \Omega\}$ $\Omega = \{_{"},_{"},_{"}\}$ then the Neyman-Pearson Most powerful test is a function of T. (10 marks)
- b. The heat evolved in calories per gram of a cement mixture approximately normally distributed. The mean isthought to be 100 and the standard deviation is 2. We wish totest H_0 ; ~ 100 with a sample ofn = 9 specimens.
 - i. If the acceptance region is defined as $98.5 \le \overline{x} \le 101.5$,find the type I error probability (3 marks)
 - ii. Find the type two error for the case where the true mean heat evolved is 103.(3marks)
 - iii. Find the power of the test for the case where the true mean heat evolved is105. This value (4 marks)

Question THREE

- a. Define the likelihood ratio test (7 marks)
- b. Show that if $\{f(x;_{_{\!\it I\!\! I}}),_{_{\!\it I\!\! I}}\in\Omega\}$ admits a sufficient statistics T then for testing $H_0;_{_{\!\it I\!\! I}}\in\Omega_0$ against $H_1;H_0;_{_{\!\it I\!\! I}}\in\Omega-\Omega_0$ likelihood ratio test a function of the sufficient statistics. (3marks)
- c. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(\neg, \uparrow^2)$ random variables. Find a size Γ likelihood ratio test for testing H_0 ; $\neg = \neg_0$ against H_1 ; $\neg \neq \neg_0$ (10 marks)

Question FOUR

- a. Let $X \sim bin(n,p)$ if $n \to \infty$ and p is close to Let $\frac{1}{2}$, find a size Let Γ approximate uniform most powerful unbiased test for H_0 ; $p = p_0$ against (10 marks) H_1 ; $p = p_1$
- b. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(0, \uparrow^2)$ random variables. Determine a uniform most powerful unbiased test for the hypothesis of the form $H_0; \uparrow^2 = \uparrow^2_0$ against $H_1; \uparrow^2 = \uparrow^2_1$ (10 marks)

Question FIVE

a. Let $x_{i1}, x_{i2}, ..., x_{in}$ be independently identically distributed $N(\sim_i, \uparrow_i^2)$ random variables for i=1,2,...,k. Find a size Γ LRT test for $H_0; \sim_i = \sim_j$ against $H_1; \sim_i \neq \sim_j$ (15 marks)

b. Show that for testing H_0 ; " $_1 \leq$ " $_2 =$ against H_1 ; " $_3 <$ " $_1 =$ or " $_3 <$ " $_3 =$ there exists a uniform most

$$\text{powerful unbiased size Γ test given by $\mathbb{W}(x)$} = \begin{cases} 1 & \textit{if} & T(x) > c_1 \\ \in & \textit{if} & T(x) = c_2 \\ 0 & \textit{if} & c_1 < T(x) < c_2 \end{cases} \tag{5 marks}$$