

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DCC/09, DBC/09, HDB 10

END OF SEMESTER EXAMINATIONS

MAY 2010 SERIES

AH 2103 - CALCULUS I

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

Answer booklet Pocket calculator

This paper consists of **FIVE** Questions. Answer Question **ONE** and any other **TWO** Questions. Maximum marks for each part of a question are as shown.

Question ONE (COMPULSORY)

. .

(a). Find the derivative of
$$y = \frac{1}{x+2}$$
 at $x=1$ and $x=3$ from first principles.
(6 Marks)
(b). Find $\frac{dy}{dx}$, given;
(i). $y = x^2 \cos x + 2x \sin x + 2 \cos x$
(ii). $y = l_n (x+2)^3$
(iii). $y = \cos 3x + \frac{1}{3}x$
(12 Marks)
(c). A closed cylindrical container has a volume of 64 cm³. Find the dimensions
such that the surface area of the container is a minimum. (12 Marks)

1

Question TWO

- (a). Find the equations of the tangent and normal to $y = x^2 3xy + y^2 = 5$ at (1, 1). (10 Marks)
- Water is running out of a conical funnel at the rate of 1cm³sec⁻¹. The radius (b). of the top of the funnel is 4cm and the sides slope at 60° to the horizontal. Find the rate at which height of the water surface is falling when it is 2cm from the top. (10 Marks)

Question THREE

Find
$$\frac{dy}{dx}$$
, given;
(i). $y = arc \tan \frac{1+x}{1-x}$ (7 Marks)
(ii). $y = l_n (x^2 + 3)(x^3 + 1)$ (6 Marks)
(iii). $y = e^{-2x} \sin 2x$ (7 Marks)

Question FOUR

(a). Find the curvature of the parabola $y^2 = 4x$ at the point (1, -2).

(8 Marks)

(b). A curve is expressed parametrically as $x = e^{-t} \cos 2t$, $y = e^{-2t} \sin 2t$. Determine slope of the curve at the point t=0. (12 Marks)

Question FIVE

Determine the turning points for the curve $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$. Hence sketch the curve in the range $-4 \le x \le 3$. (20 Marks)