THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering \& Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING
DCC/09, DBC/09, HDB 10

END OF SEMESTER EXAMINATIONS

MAY 2010 SERIES

AH 2103 - CALCULUS I

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:
Answer booklet
Pocket calculator
This paper consists of FIVE Questions.
Answer Question ONE and any other TWO Questions.
Maximum marks for each part of a question are as shown.

Question ONE (COMPULSORY)

(a). Find the derivative of $y=\frac{1}{x+2}$ at $x=1$ and $x=3$ from first principles.
(6 Marks)
(b). Find $\frac{d y}{d x}$, given;
(i). $y=x^{2} \cos x+2 x \sin x+2 \cos x$
(ii). $\quad y=l_{n}(x+2)^{3}$
(iii). $y=\cos 3 x+\frac{1}{3} x$
(12 Marks)
(c). A closed cylindrical container has a volume of $64 \mathrm{~cm}^{3}$. Find the dimensions such that the surface area of the container is a minimum. ($\mathbf{1 2}$ Marks)

Question TWO

(a). Find the equations of the tangent and normal to $y=x^{2}-3 x y+y^{2}=5$ at $(1,1)$.
(10 Marks)
(b). Water is running out of a conical funnel at the rate of $1 \mathrm{~cm}^{3} \mathrm{sec}^{-1}$. The radius of the top of the funnel is 4 cm and the sides slope at 60° to the horizontal. Find the rate at which height of the water surface is falling when it is 2 cm from the top.
(10 Marks)

Question THREE

Find $\frac{d y}{d x}$, given;
(i). $y=\arctan \frac{1+x}{1-x}$
(7 Marks)
(ii). $\quad y=l_{n}\left(x^{2}+3\right)\left(x^{3}+1\right)$
(6 Marks)
(iii). $y=e^{-2 x} \sin 2 x$
(7 Marks)

Question FOUR

(a). Find the curvature of the parabola $y^{2}=4 x$ at the point $(1,-2)$.
(8 Marks)
(b). A curve is expressed parametrically as $x=e^{-t} \cos 2 t, \quad y=e^{-2 t} \sin 2 t$. Determine slope of the curve at the point $\mathrm{t}=0$.
(12 Marks)

Question FIVE

Determine the turning points for the curve $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x+8$. Hence sketch the curve in the range $-4 \leq x \leq 3$.
(20 Marks)

