THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 Faculty of Engineering \& Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DCC/09, DBC/o9, HDB 10

END OF SEMESTER EXAMINATIONS

MAY 2010 SERIES

AH 2103 - CALCULUS I

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:
Answer booklet
Pocket calculator
This paper consists of FIVE Questions.
Answer Question ONE and any other TWO Questions.
Maximum marks for each part of a question are as shown.

Question ONE (COMPULSORY)

(a). Working from first principles, find the derivative of $y=\frac{1}{x-2}$ at $x=1$ and $x=4$.
(6 Marks)
(b). Find $\frac{d y}{d x}$ given:
(i). $y=x^{2} \sin x+2 x \cos x-2 \sin x$
(ii). $y=l_{n}(x+3)^{2}$
(iii). $y=\frac{1}{4} \sinh 2 x-\frac{1}{2} x$
(12 Marks)
(c). A cylindrical container has a volume of $64 \mathrm{~cm}^{3}$. Find the dimensions so that the amount (surface area) of the container is a minimum where: The container is an open cup.
(9 Marks)
(d). Find $\frac{d y}{d x}$ given $x=\theta-\sin \theta, y=1-\cos \theta$.
(3 Marks)

Question TWO

(a). A curve is expressed parametrically as $x=\sqrt{t}, \quad y=t-1 / \sqrt{t}$. Find the equation of the tangent to the curve at the point where $t=4$.
(10 Marks)
(b). Find the curvature of a parabola $y^{2}=12 x$ at the point $(3,6)$.

Question THREE

Determine the turning points for the curve $y=2 x^{3}-9 x^{2}+12 x$. Hence sketch the graph of the curve.
(20 Marks)

Question FOUR

(a). A car starts from rest and moves a distance, S meters in t seconds where $s=\frac{1}{6} t^{3}+\frac{1}{4} t^{2}$. Find:
(i). The initial acceleration.
(ii). The acceleration after two seconds.
(4 Marks)
(b). Find the first derivatives for:
(i). $y=\operatorname{arccot} \frac{1+x}{1-x}$
(ii). $\quad y=l_{n}\left(x^{3}+2\right)\left(x^{2}+3\right)$
(iii). $y=e^{-2 x} \sin 3 x$
(16 Marks)

Question FIVE

(a). Find the equations of the tangent and normal to $y=x^{3}-2 x^{2}+4$ at $(2,4)$.
(8 Marks)
(b). Water is running out of a conical funnel at the rate of $1 \mathrm{~cm}^{3} / \mathrm{sec}$. If the radius of the top of the funnel is 4 cm and the height is 8 cm , find the rate at which the radius of the water surface is decreasing when it is 2 cm from the top.
(10 Marks)
(c). Find $\frac{d y}{d x}$ given $y=\cosh ^{-1} e^{x}$.
(2 Marks)

