THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
Faculty of Engineering \& Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING
 DIPLOMA IN CIVIL ENGINEERING \& CAD DIPLOMA IN BUILDING ENGINEERING \& CAD

SEMESTER EXAMINATIONS

APRIL/MAY 2010 SERIES

AH 2204 - CALCULUS III

TIME: 2 HOURS

Instructions to Candidates

This paper consists of TWO Section i.e. Section A and B. Section A is COMPULSORY.
Answer any TWO Questions in Section B.
Maximum marks for each Question is shown.
You should have material calculation for this exam.

Question ONE (COMPULSORY)

(a). (i). Using L'Hospital's Rule, determine $\lim _{x \rightarrow 0} \frac{\tan x-x}{\sin x-x}$
(5 Marks)
(ii). Find the limit of the function, $f(x)=\frac{x-4}{3 \sqrt{x-2}}, \quad x \neq 4$
(5 Marks)
(b). (i). Evaluate, $\int \tan ^{n} x d x$. Hence use the integral to solve.

$$
\int_{o}^{\pi / 2} \tan ^{5} d x
$$

(12 Marks)
(ii). Test the convergence of the series;

$$
1+\frac{2 x}{2!}+\frac{3^{2} x^{2}}{3!}+\frac{4^{3} x^{3}}{4!}+
$$

(8 Marks)

SECTION B (CHOOSE ANY TWO)

Question TWO

(a) (i). Prove that, $\int \frac{x^{h}}{\sqrt{a^{2}+x^{2}}} d x=\frac{x^{h-1} \sqrt{a^{2}+x^{2}}}{h}-\frac{(h-1)}{h} a^{2} \int \frac{x^{h-2}}{\sqrt{\left(a^{2}+x^{2}\right.}} d x$
(ii). Use above integral to evaluate;

$$
\int_{o}^{2} \frac{x^{5}}{\sqrt{(5+x)}} d x
$$

(12 Marks)
(b). If $\operatorname{Sin}^{-1}(x / y)+\tan ^{-1}(x / y)$ then find the value of $x \frac{\delta u}{\delta x}+y \frac{8 u}{\delta y}$
(8 Marks)

Question THREE

Evaluate, $\iint\left(x^{2}+y^{2}\right) d x d y$ throughout the area enclosed by the curves
$y=4 x, \quad x+y=3, \quad y=0$, and $\quad y=2$.
(20 Marks)

Question FOUR

(a). (i). Evaluate, $\iiint_{R}(x+y+z) d x d y d z$, where

$$
\begin{equation*}
R: 0 \leq x \leq 1, \quad 1 \leq y \leq 2, \quad 2 \leq z \leq 3 . \tag{5Marks}
\end{equation*}
$$

(ii). Using Taylor's or Maclaurin's series find the value of $\sin 31^{\circ}$ correct to five decimal places.
(7 Marks)
(b). Determine an expression of $\int x^{h} \sin x d x$ and hence solve $\int_{0}^{\pi / 3} x^{4} \sin x d x$.
(8 Marks)

Question FIVE

(a). using mean value theorem, find the limits within which $\int_{1.5}^{1.6} \log _{e} x^{2} d x$ Must lie.
(b). (i). The height h and semi-vertical angle α of a cone are measured, and from there A, the total area of the cone, including the base is calculated. If h and α are in error by small quantities δh and $\delta \alpha$ respectively.
(i). Find corresponding error in the area.
(ii). Show that if $\alpha=\pi / 6$, an error of $+1 \%$ in h will be approximately compensated by an error of -19.8 in α.
(15 marks)

