

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DC 10, DB 10, DBC 10, CA 10

SEMESTER EXAMINATIONS

APRIL/MAY 2010 SERIES

CHEMISTRY 2

TIME: 2 HOURS

Instructions to Candidates

This paper consists of **FIVE** Questions. Answer Q1 and any other **TWO** Questions.

Question ONE

(a). The following table gives first, second, third and fourth ionization energies in Ks/mole IE₁, IE₂, IE₃ and IE₄ respectively of elements P, Q, R and S on the periodic table. Symbols P, Q, R and S are not actual elements symbol.

Element	IE ₁	IE ₂	IE ₃	IE ₄
P	497	4582	6938	9576
Q	504	984	5732	6939
R	421	3081	4620	5940
S	580	1823	2758	11846

- (i). Write chemical equations for formation of the most stable ions of P, Q, R and S.
- (ii). Which of the above elements have same chemical properties. Give reasons for your answer.
- (iii). Classify elements P, Q, R and S as S-block, P-block, d-block and f-block on the p.d. Table. Use knowledge of electronic configuration to justify your answer.
- (iv). Write chemical equations for reaction of elements P, Q, R and S with oxygen gas.

(14 Marks)

- (b). Justify for the following observations:
 - (i). Fe⁺² is readily oxidized to Fe⁺³ but Zn^{+2} is not oxidized to Zn^{+3} .
 - (ii). 11Na has a larger atomic size than 13Al.
 - (iii). $^{35}_{17}Cl$ and $^{37}_{17}Cl$ have same Chemical properties but different physical properties.

(12 Marks)

(c). From the following Redox equation:

$$Mg + H_2So_4 \longrightarrow MgsSo_4 + H_2$$

Identify:

- (i) Reduction process
- (ii) Oxidation process
- (iii) Oxidant
- (iv) Reluctant

(4 Marks)

Question TWO

- (a). State:
- (i). **THREE** difference between ionic compounds covalent compounds.
- (ii). **TWO** requirements for hydrogen bond formation.
- (iii). **THREE** factor that influence formation of ions.

(8 Marks)

- (b). (i). Write chemical equations to show self ionization of water.
 - (ii). Use the above equation in b(i) to define an acid and a base.
 - (iii). Define PH
 - Buffer Solution
 - (iv). Give **TWO** types of buffer Solution and one example in each case.

(8 Marks)

Question THREE

- (a). Outline the following modes of formulation process for a growing PVC polymer.
 - (i). Mutual combination
 - (ii). Dispropotionation

(6 Marks)

(b). With help of balanced chemical equation describe the rusting process of iron.

(10 Marks)

- (c). State:
- (i). **TWO** uses of polymer in building construction.
- (ii). **TWO** methods of preventing iron from Rusting.

(4 Marks)

Question FOUR

- (a). With help of equations describe:
 - (i). **THREE** methods of removing Temporary water hardness.
 - (ii). **TWO** methods of removing permanent water hardness.

(12 Marks)

(b). List **FIVE** main ingredients of paint and state **ONE** function of each.

(8 Marks)

Question FIVE

(a). State and differentiate between **THREE** types of chemical formulaes.

(6 Marks)

- (b). Define the following terms:
 - (i). Isotope
 - (ii). Atomic number
 - (iii). Mass number

(3 Marks)

- (c). State (i). Hunds rule
 - (ii). Aufbaus principle

(2 Marks)

- (d). List **FIVE** important characteristics of a good polymer. (5 Marks)
- (e). (i). Write full name of EDTA.
 - (ii). Draw structural formula of EDTA.
 - (iii). Draw structural formulae of the most stable ion of EDTA.

(5 Marks)