

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING & TECHNOLOGY

MECHANICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE

EMG 2414: Numerical Methods for Engineers

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of Choose No questions. AttemptChoose instruction. **Do not write on the question paper.**

Question ONE

(a) Solve each of the following systems of linear equations using Gauss-elimination and state the type of solutions in each.

$4x_1 - $	$6x_2 = 10$	
$6x_1 - $	$9x_2 = 15$	(2 marks)
$2x_1 +$	$x_2 = 3$	
$2x_1 +$	$x_2 = 1$	(3 marks)
(b)	Use trapezoidal rule to integrate	$\int_{0}^{\frac{f}{3}} \sqrt{\sin x} dx$, using six intervals evaluated correct to 3 decimal places
(5 mai	rks)	

- (c) Consider the initial value problem y' = x(y+1), y(0) = 1. Compute y(0.2) with h = 0.1Using Euler's method. (5 marks)
- (d) Using Newton's backward difference formula, find the polynomial for the following data.

(e) Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ (5 marks) (5 marks)

(f) Solve the differential equation

 $\frac{dy}{dx} = 3e^x - 2y, \quad y(0) = 0 \text{ by the method of Runge Kutta method of order 4, to get the value of y at}$ $x = 0.1 \qquad \text{given that } h = 0.1$

Question TWO

- (a) Derive the trapezium rule using the Lagrange linear interpolating polynomial for points
 (a, f(a)),(b, f(b))
 (5 marks)
- (b) Using the 4th order Runge Kutta method, solve the initial value problem

$$\frac{dy}{dx} = -2y + x + 4, \quad y(0) = 1 \text{ to obtain } y(0.2) = 1 \text{ using } \Delta x = 0.2$$
 (5 marks)

- (c) Using Gauss elimination solve the system of linear equations. (5 marks) $x_1 + 3x_2 + 5x_3 = 14$ $2x_1 - x_2 - 3x_3 = 0$ $4x_1 + 5x_2 - x_3 = 7$
- (d) Evaluate $\Delta^2 f(x)$, given that $f(x) = 3x^2$, h=0.1 (5 marks)

Question THREE

(a) Use Gaussian Elimination to convert the following matrix into a row echelon matrix

1	-3	1	-1^{-1}
-1	3	0	3
2	-6	3	0
1	3	1	5

- (b) Using the forward difference calculate $\Delta^2 f(x)$, given that $f(x) = x^2 + 8x 5$ (7 marks)
- (d) Using Taylor series expand $f(x) = \frac{1}{x-1} 1$ to obtain cubic approximation around a = 0 (7 marks)

(5 marks)

Question FOUR

(a) Find the Eigen vectors of the matrix $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$ given that the Eigen values of A are $\} = -2, \} = -2, \} = 4,$ (5 marks)

(b) Using Newton's forward difference, find $\frac{dy}{dx}$ at x = 1 from the following table of value (5 marks)

X	1	2	3	4
у	1	8	27	64

(c) The velocity of a particle which starts from rest is given by the following table

t	0	2	4	6	8	10	12	14	16	18	20
v(t)	0	16	29	40	46	51	8	32	18	3	0

Evaluate using trapezium rule, the total distance travelled is 20 seconds. (5 marks)

(d) Find $\frac{dy}{dx}$, at x=1.2

Х	1	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

(5 marks)

Question FIVE

(a) Find a quadratic equation of the form $y = c + bx + ax^2$ that goes through (-2,20), (1,5) and (3,25) (7 marks)

- (b) Using the Simpson's $\frac{1}{3}$ rule evaluate $I = \int_{1}^{2} \frac{dx}{5+3x}$ with 8 subintervals. (7 marks)
- (c) Using the data sin(0.1) = 0.09983 and sin(0.2) = 0.19867,
 - i) find an approximate value of sin(0.15)
 - ii) find the relative error (6 marks)