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Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions and TWO sections A and B.
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages.

SECTION A (COMPULSORY)

Question ONE  (30 marks)

a. Consider the following second order partial differential equation:-

3 10 3 0xx xy yyu xy u u  
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(i) Classify it. (2 marks)
(ii) Reduce to canonical form. (9 marks)
(iii) Find the general solution in terms of arbitrary functions. (2 marks)

b. A string of length L is stretched between points  0,0 and  0,L on the x axis. At time

0t it has a shape given by ( ), 0f x x L  and it is released from rest.

i. Give the equation of a vibrating string described here (2 marks)
ii. State the boundary  and initial conditions associated with this problem (4 marks)
iii. Find the displacement of the string at any latter time t . (11 marks)

SECTION B

Question TWO   (20 marks)

a. Solve the Laplace’s equation equation 2 0u  in two dimension which satisfies the
conditions

(0, ) ( , ) ( ,0) 0u y u l y u x   and

( , ) sin
n x

u x a
l




by  the method of separation of variables. (20 marks)

Question THREE   (20 marks)

a. Show that in cylindrical coordinates , ,r z defined by the relation

cos , sin ,x r y r z z    , the Laplace’s equation 2 0u  takes the

form
2 2 2
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   
(10 marks)

b. Classify and transform to canonical form 2 0xx yyu x u  (10 marks)
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Question FOUR   (20 marks)

a. Obtain the general solution for 4 5 2xx xy yy x yu u u u u     (8 marks)

b. Solve by the method of characteristics 3 0
v v

t x

 
 

 
,
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, 0 1
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x x

therwisev x
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 (12 marks)

Question FIVE   (20 marks

a. Find the Fourier series expansion of ( )f x x on ( , )L L (8 marks)

b. Solve Laplace’s equation inside a circle of radius a
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subject to ( , ) ( )u a f  (12 marks)


