TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE
AMA 4323: ORDINARY DIFFERENTIAL EQUATIONS II
END OF SEMESTER EXAMINATION
SERIES: MAY 2016
TIME: 2 HOURS
DATE: 2016

PAPER A

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) Obtain the general solution to the following homogeneous linear system
$x_{1}^{\prime}=x_{2}$
$x_{2}^{\prime}=3 x_{2}-2 x_{1}$
b) Find a solution of the initial Value problem $\frac{d y}{d x}=x^{2}, \quad x_{0}=2, y_{0}=1$ using the uniqueness and existence theorem (5 marks)
c) Reduce the fourth order equation to first order systems

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}-5 \frac{d^{3} y}{d x^{3}}+7 \frac{d^{2} y}{d x^{2}}+9 \frac{d y}{d x}-6 y=e^{x} \tag{5marks}
\end{equation*}
$$

d) Solve $\frac{d^{3} y}{d x^{3}}=x e^{x}$
e) Solve $x^{2} y \frac{d^{2} y}{d x^{2}}+\left(x \frac{d y}{d x}-y^{2}\right)=0$
f) Locate and classify the singular points of the equation

$$
\begin{equation*}
\left(x^{4}-2 x^{3}+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(x-1) \frac{d y}{d x}+x^{2} y=0 \tag{5marks}
\end{equation*}
$$

QUESTION TWO

a) Consider a first order vector equation $X^{\prime}(t)=A X(t)+B(t)$ where A is an $n \times n$ matrix of real numbers, $X(t), B(t)$ are column vectors. Obtain the characteristic polynomial, characteristic equation and Eigen values of matrix A .
b) Solve $z y d x=z x d y+y^{2} d z$

QUESTION THREE

a) Find the two independent series solutions of the Bessel's equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0 \tag{14marks}
\end{equation*}
$$

b) Solve the first order system

$$
\frac{d x}{d t}=y, \quad \frac{d y}{d t}=-2 x+3 y
$$

QUESTION FOUR

a) Solve the system $X^{\prime}=A X$ where $A=\left(\begin{array}{rrr}1 & -1 & -1 \\ 0 & 1 & 3 \\ 0 & 3 & 1\end{array}\right)$
b) Obtain the roots of the indicial equation of $9 x^{2} y^{\prime \prime}+(x+2) y=0$

QUESTION FIVE

a) Solve the system of linear equations

$$
\begin{aligned}
& x^{\prime}(t)=3 x(t)-4 y(t) \\
& y^{\prime}(t)=4 x(t)-7 y(t)
\end{aligned}
$$

b) Show the convergence of the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=y ; \quad x_{0}=0, \quad y_{0}=1 \tag{8marks}
\end{equation*}
$$

