TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

UNIVERSITY EXAMINATION FOR:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE

AMA 4313: NUMBER THEORY
END OF SEMESTER EXAMINATION
SERIES: MAY 2016
TIME: 2 HOURS
DATE: 2016
PAPER B

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions
Do not write on the question paper.

SECTION A

Question one
(1)(a) For all integers n. Show that $(a, b)=(a-n b, b)$
(b) Show that a non empty subset A of Z is an ideal if $\quad x, y \in \mathrm{~A}$ then $x-y \in \mathrm{~A}$. (4mks)
(c) Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be integers. Show that
(i) $(\mathrm{ca}, \mathrm{cb})=\mathrm{c}(\mathrm{a}, \mathrm{b})$ for every non negative integer c .
(ii) If $d=(a, b) \neq 0$ then $(a / d, b / d)=1$.
(d) Let $(\mathrm{a}, \mathrm{b})=1$ and $a / b c$. Show that a / c.
(e) By use of Euclidean Algorithm find $(247,91)$.
(f) Let p be aprime number if $p / b_{1} b_{2} \ldots \ldots b_{n}$. Show that p / b_{i} for some i .
(g) Show that there exist infinitely many primes.
(h) Show that the equation $a x+b y=c$ has integer solutions
(i) If and only if $(a, c) / c$.
(ii) If x_{0}, y_{0} is a solution then all solutions are given by

$$
\begin{equation*}
x=x_{0}+\frac{b}{(a, b)} n, y=y_{0}-\frac{a}{(a, b)} n, n \in \mathrm{Z} . \tag{4mks}
\end{equation*}
$$

(i) Suppose that $(a, b)=1$. Show that the linear equation $a x+b y=c$ has integer solutions For all c

SECTION B

Question two

(2)(a) Solve the linear Diophantine equation $247 n+91 m=39$.
(b) Solve the equation $6 x+10 y+15 z=5$ for integer solutions .
(c) Let c be a non zero integer, show that
(i) $f c a \cong c b(\bmod . m)$ then $a \cong b(\bmod m=(c, m))$
(ii) $f c a \cong c b(\bmod . m)$ and $(c, m)=1$ then $a \cong b(\bmod m)$.

Question three ,(20MKS)
(3)(a) State and prove Euler's Theorem
(b) Let $f(x)=x^{2}+x+9$. Find the roots of the congruence $\mathrm{f}(\mathrm{x}), 0(\bmod .63)$
(d) By use of wilson's theorem, show that 7 is prime.

Question four(20MKS)

(4)(a) Let m be a positive integer. Show that congruences modulo m satisfy
(i) Reflexive property
(ii) Symmetric property.
(iii) Transitive property.
(b)A grocer orders apples and oranges at a total cost of sh.510.If an apple cost him

Sh. 20 and an orange cost him sh. 50 . How many of each type of fruit did he order.(6mks)
(c) Find base 2 expansion of 1864.
(5)(a) Show that (i) $\sum_{j=m}^{n}\left(a_{j}+b_{j}\right)=\sum_{j=m}^{n} a_{j}+\sum_{j=m}^{n} b_{j}$.
(ii) $\sum_{k=-2}^{1} k^{3}=-8$
(b) By use of Euclidean algorithm find $(34,55)$.
(c) Let b be a positive integer with $\mathrm{b}>1$. Show that every positive integer n can be written uniquely In the form $n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots \ldots .+a_{1} b+a_{i j}$, where $0 \leq a_{j} \leq b$.
(d) Evaluate (i) $(105,140,350)$.
(ii) $\prod_{j=1}^{5} j$.
(2mks)

