

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE

AMA 4313: NUMBER THEORY

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: 2016

PAPER B

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID*

This paper consists of 5 questions. Question one is compulsory. Answer any other two questions **Do not write on the question paper.**

SECTION A

Question one

(1)(a) For all integers n. Show that (a,b)=(a-nb,b)

(3mks)

(b) Show that a non empty subset A of Z is an ideal if $x, y \in A$ then $x - y \in A$. (4mks)

(c) Let a,b,c be integers. Show that

(i) (ca,cb)=c(a,b) for every non negative integer c.

(4mks)

(ii) If
$$d = (a,b) \neq 0$$
 then $\begin{pmatrix} a/d, b/d \end{pmatrix} = 1$. (2mks)

(d) Let (a,b)=1 and
$$\frac{a}{hc}$$
. Show that $\frac{a}{c}$. (3mks)

(e) By use of Euclidean Algorithm find (247,91). (4mks)

(f) Let p be aprime number if
$$p_{b_1b_2,...,b_n}$$
. Show that p_{b_i} for some i. (4mks)

- (g) Show that there exist infinitely many primes. (4mks)
- (h) Show that the equation ax+by=c has integer solutions

(i) If and only if
$$(a,c)/c$$
 . (4mks)

(ii) If x_0, y_0 is a solution then all solutions are given by

$$x = x_0 + \frac{b}{(a,b)}n, \ y = y_0 - \frac{a}{(a,b)}n, \ n \in Z.$$
 (4mks)

(i) Suppose that (a,b)=1. Show that the linear equation ax+by=c has integer solutions For all c (4mks)

SECTION B

Question two

(2)(a) Solve the linear Diophantine equation 247n+91m=39. (5mks)

(b) Solve the equation 6x+10y+15z=5 for integer solutions . (7mks)

(c) Let c be a non zero integer, show that

(i)
$$f ca \cong cb \pmod{m}$$
 then $a \cong b \pmod{m} = (c, m)$

(ii)
$$f \ ca \cong cb \pmod{m}$$
 and $(c, m) = 1$ then $a \cong b \pmod{m}$. (4mks)

Question three ,(20MKS)

(3)(a) State and prove Euler's Theorem (4mks)

(b) Let
$$f(x) = x^2 + x + 9$$
. Find the roots of the congruence f(x), 0(mod.63) (6mks)

(c) Show that 2047 is a strong pseudoprime to base 2. (5mks)

(d) By use of wilson's theorem, show that 7 is prime.

(5mks)

(2mks)

Question four(20MKS)

(4)(a) Let m be a positive integer. Show that congruences modulo m satisfy

(b)A grocer orders apples and oranges at a total cost of sh.510.If an apple cost him

Sh.20 and an orange cost him sh.50. How many of each type of fruit did he order.(6mks)

(c) Find base 2 expansion of 1864. (6mks)

QUESTION FIVE (20MKS).

(5)(a) Show that (i)
$$\sum_{j=m}^{n} (a_j + b_j) = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$
. (3mks)

(ii)
$$\sum_{k=-2}^{1} k^3 = -8$$
 (2mks)

(c) Let b be a positive integer with b>1. Show that every positive integer n can be written uniquely

In the form
$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_{ij}$$
, where $0 \le a_j \le b$. (6mks)

(ii)
$$\prod_{j=1}^{5} j$$
. (2mks)