TECHNICAL UNIVERSITY OF MOMBASA UNIVERSITY EXAMINATIONS BFSO/BTAC

AMA4109: CALCULUS FOR SCIENCES

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30MARKS)

- (a) Integrate the function $f(x) = 3x^2 2x + 5$. (2mks)
- (b) (i) Define what is meant by $f: X \longrightarrow Y$ is a continuous function at x = a. (2mks)
 - (ii) Investigate continuity of f(x) at x = -1 and x = 1 where

$$f(x) = \begin{cases} 2 - x, x < -1 \\ x, -1 \le x < 1 \\ 4, x = 1 \\ 4 - x, x > 1 \end{cases}$$
 (4mks)

- (c) Find $\frac{d^3y}{dx^3}$ if $y = 2xe^x$ (3mks)
- (d) Evaluate the following limits

(i)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{x^2}$$
. (3mks)

(ii)
$$\lim_{x \to \infty} \frac{1 - \sqrt{x}}{1 + \sqrt{x}}.$$
 (3mks)

- (e) Find the area bounded by $x = 4 y^2$ and the y-axis (4mks)
- (f) Decompose the rational fraction $\frac{5x+2}{(x+2)(3x-2)}$ (4mks)
- (g) Use first principles to differentiate $f(x) = x^2 + 2x$. Hence find f'(2). (5mks)

QUESTION TWO (20MKS)

(a) Find the derivatives of

(i)
$$g(x) = (x^3 - 3x^2 + 6x + 12)^5$$
 (3mks)

(ii)
$$f(x) = \frac{3x-3}{4x+9}$$
 (3mks)

(iii)
$$h(x) = \ln(x^6 + 4)$$
 (2mks)

- (b) Use differentials to approximate the value of $\sqrt[6]{1.97}$ (5mks)
- (c) Differentiate $f(x) = \sqrt{x-1}$ and hence find
 - (i) the domain of f'(x).
 - (ii) the tangent line at x = 10. (7mks)

В

QUESTION THREE (20MKS)

(a) Differentiate the function
$$y = \sqrt{x} \sinh^{-1} x^2$$
 (3mks)

(b) Find the vertical asymptotes of
$$f(x) = \frac{x}{x^2 - x - 2}$$
. (4mks)

(c) Show that
$$\frac{d}{dx}(\cos ec^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$
 (4mks)

(d) Find the equation of tangent to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$ that passes through (4, 3) (5mks)

(e) Find the linearization of $f(x) = \sqrt{x+3}$ at x = 1 and use it to approximate $\sqrt{3.8}$. (6mks)

QUESTION FOUR (20MKS)

(a) Integrate by substitution

(i)
$$\int_{0}^{3} \sqrt{1 - 3x} dx$$
 (3mks)

(ii)
$$\int \frac{(\ln x)^2}{x} dx$$
 (3mks)

(iii)
$$\int \frac{1}{x^2 + 9} dx$$
 (5mks)

(b) Integrate by parts

(i)
$$\int x^4 \ln x \, dx$$
 (4mks)

(ii)
$$\int x^3 e^x dx$$
 (5mks)

QUESTION FIVE (20MKS)

(a) Find all intervals where
$$f(x) = \frac{1}{3}x^3 - 3x^2 + 5x - 4$$
 is increasing or decreasing. (4mks)

(b) Differentiate

(i)
$$f(x) = e^{x^2} \cosh 4x$$
. (2mks)

(ii)
$$y = \frac{\sin x}{1 + \cos x}$$
. (4mks)

(c) A ladder 10m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1m/s, how fast is the top of the ladder sliding the wall when the bottom of the ladder is 6m from the wall? (4mks)

(d) Find the arc length of on
$$y = \frac{x^3}{6} + \frac{1}{2x}$$
 on $\frac{1}{2} \le x \le 2$. (6mks)