

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES

MATHEMATICS & PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN ENVIRONMENTAL PHYSICS &

RENEWABLE ENERGY

APS 4303: THEMAL PHYSICS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of 4 questions. **Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.**

SECTION A (30POINTS)

QUESTION 1

(a) Explain the following terms

- (i) Ensemble average
- (ii) Partition function

[3points]

[3points]

(iii) Entropy

(b) (i) Consider a one-particle system of two states, one of energy o and one of energy
v . The particles are in thermal equilibrium with a reservoir at temperature ‡ . Compute
the energy and heat capacity of the system as a function of then temperature ‡ . [7points]

(ii) If we shift the zero energy and take the energies of the two states as $-\frac{1}{2}v$ and

 $+\frac{1}{2}$ ∨, compute the partition function and heat capacity of the system and find what the heat capacity looks like in conventional temperature system. [7points] (c) Consider a model system with N_{\uparrow} spins up and N_{\downarrow} spins down.Let $N = N_{\uparrow} + N_{\downarrow}$; the spin excess is $2s = N_{\uparrow} - N_{\downarrow}$. The entropy is given by(in Stirling's approximation) $\dagger (s) \approx -\left(\frac{1}{2}N + s\right)\log\left(\frac{1}{2} + \frac{s}{N}\right) - \left(\frac{1}{2}N - s\right)\log\left(\frac{1}{2} - \frac{s}{N}\right)$.

In a magnetic field B, what would be the free energy and what is the expression for the minimum energy? [7points]

SECTION B

QUESTION 2

(a) For a particle in a box the energy is given by

$$V_n = \frac{\hbar^2}{2m} \left(\frac{f}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right), \text{ where the letters have their usual meanings.}$$

(i) Give the expression for the partition function for this system. [4points]

(ii) What is the expression for the partition function if the spacing between adjacent energy is small in comparison with ‡ . Use the formula,

$$\left(\int_{0}^{\infty} dn_{x} \exp\left(-\Gamma^{2} n_{x}^{2}\right)\right)^{3} = \frac{f^{3/2}}{8\Gamma^{3}}$$
 [6points]

(b)The partition function of an ideal of N identical particles is given by

$$Z_N = \frac{1}{N \downarrow} (n_Q V)^N$$
, where $n_Q = \left(\frac{M^{\ddagger}}{2f\hbar^2}\right)$ and the letters have their usual

meanings.

	r • . 1
1) Dotormino onormy of the gas	lanointel
	130000051
	[]]

(ii) Determine the pressure of the gas. [3points]

[4points]

Iiii) Determine the entropy of the system.

QUESTION 3

(a) Give a brief description of the Debye model of heat capacity. [10points]

(b) In the Debye model of heat capacity the total energy is given by

$$U = \int_{0}^{n_{D}} dnn \frac{\hbar \check{\mathsf{S}}}{\exp(\hbar \check{\mathsf{S}}/\ddagger) - 1}.$$

(i) Determine the total energy in the low temperature limit.[5points](ii) Determine the heat capacity C_v in the low temperature regime.[5points]

QUESTION 4

(a) Define the chemical potential of an ideal gas. [4points]

(b) The free energy of a monatomic gas is given by

$$F = -\ddagger \left[\log Z_1 - \log N \downarrow \right] \text{where } Z_1 = n_Q V = \left(\frac{M\ddagger}{2f\hbar^2} \right)^{3/2} V$$

From this expression determine the chemical potential.

[6points]

(c) The differential of entropy is given by
$$d^{\dagger}(U,V) = \left(\frac{\partial^{\dagger}}{\partial U}\right)_{V} dU + \left(\frac{\partial^{\dagger}}{\partial V}\right)_{U} dV$$
.

If denote the independent values of dU by $(UU)_n$ and dV by $(UV)_n$ the entropy change will be zero.

(i) Determine the expression for the pressure in terms of \ddagger, \dagger, V with U kept constant. [6points]

(ii) From the expression for d^{\dagger} obtain the thermodynamic identities. [4points]