TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING, BUILDING \& CIVIL ENGINEERING AND MECHANICAL \& AUTOMOTIVE ENGINEERING
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING, MECHANICAL ENGINEERING AND ELECTRICAL ENGINEERING

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS
DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper. PAPER 1

QUESTION ONE (30 MARKS)

a) Describe the orthogonal trajectories of $y=k x^{2}, k \neq 0$
[6 Marks]
b) Obtain the general solution to the partial differential equation
$(y-z) p+(z-x) q=x-y$
c) Show that a the partial differential equation arising from

$$
z=\frac{1}{2}\left(a^{2}+2\right) x^{2}+a x y+b x+\phi(y+a x)
$$

can be put in the form $(r+u)(t+v)=s^{w}$ where u, v, w are integers.
d) Find the direction cosines of the space curve defined by the parametric equations

$$
x=-0.5 s^{2}, \quad y=0.25 s^{3}, \quad z=1.5 s^{2} \text { through }(-2,2,6) \quad \text { [6 Marks] }
$$

e) Find the complete solution of $\frac{\partial^{2} z}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=\sin (3 x-y)+12 x y$.
[8 Marks]

QUESTION TWO (20 MARKS)

a) Find a partial differential equation arising from the general solution

$$
\begin{equation*}
\phi\left(x^{6}-y^{6}, \frac{x^{3}+y^{3}}{z^{3}}\right)=0 \tag{6Marks}
\end{equation*}
$$

b) A long rectangular metal plate has its two long sides and the far end at 0° and the base at 100°. The width of the plate is 10 cm . Find by the method of separation of variables, the steady-state temperature distribution inside the plate.
[14 Marks]

QUESTION THREE (20 MARKS)

a) Use Laplace transform method to solve the partial differential equation $\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=u$
subject to the initial conditions $u(x, 0)=e^{-s x}$ and $u(0, s)=0$
given that $u(x, t)$ is bounded for $t>0, x>0$.
[10 Marks]
b) An infinite metal plate covering the first quadrant has the edge along the y-axis held at 0^{0}, and the edge along the x-axis held at
$u(x, 0)= \begin{cases}100^{0}, & 0<x<1 \\ 0^{0}, & x>1\end{cases}$
Use the method of separation of variables to find the steady-state temperature distribution as a function of x and y. Assume temperatures of zero as y tends to infinity.
[10 Marks]

QUESTION FOUR (20 MARKS)

a) Solve the system
$y_{1}{ }^{\prime}=4 y_{1}-2 y_{2}$
$y_{2}{ }^{\prime}=y_{1}+y_{2}$
subject to the initial conditions $y_{1}(0)=3$ and $y_{2}(0)=-1$
b) Find the General Solution for $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}=\sin (3 x-y)$
[6 Marks]

QUESTION FIVE (20 MARKS)

a) Find the orthogonal trajectories on the conicoid $z(x+y)=4$ of a cone in which it is cut by the system of planes $x-y+z=k$ where k is a parameter.
b) Find the general integral of the partial differential equation $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ and also the particular integral which passes through the line $x=1, \quad y=0 \quad$ [10 Marks]

A SHORT TABLE OF LAPLACE TRASFORMS

$f(t)$	$L\{f(t)\}$
1	$\frac{1}{s}$
$e^{-a t}$	$\frac{1}{s+1}$
$\frac{\tan { }^{-1} \frac{a}{s} \quad \text { for } \operatorname{Re} s>i m a}{t}$	$\frac{a}{s^{2}+a^{2}}$, for $\operatorname{Re} s>$ ima
$\sin a t$	$\frac{s}{2}$
$\cos a t$	$\frac{1}{2}\left(\tan ^{-1} \frac{a+b}{s}\right)+\tan { }^{-1}\left(\frac{a-b}{s}\right)$ for $\operatorname{Re} s>0$
$\frac{1}{t} \sin a t \cos b t$	
$1-e r f\left(\frac{a}{2 \sqrt{t}}\right), a>0$	$\frac{1}{s} e^{-a \sqrt{s}}, \quad \operatorname{Re} s>0$

