TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED \&HEALTH SCIENCES
MATHEMATICS \& PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

APS 4212: VECTOR ANALYSIS
 END OF SEMESTER EXAMINATION

SERIES: MAY 2016
TIME: 2 HOURS
DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 4 questions.
Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.

SECTION A (30 MARKS)

QUESTION 1
(a) (i) Prove that the divergence of the curl of a vector vanishes.
[5points]
(ii) Prove that the gradient operator is a vector operator.
[3points]
(b) (i) For any vector B whose components are given in three dimensional Cartesian coordinates, compute $\nabla X B$
(ii) Show that $\nabla \cdot(\nabla X B)=0$
[4points]
(c) (i) Write down the expressions for the unit vectors in spherical coordinates, and find their
(ii) Prove that $\mathbf{A X B X C}=\mathbf{B}(\mathbf{A} . C)-\mathbf{C}(\mathbf{A} \cdot \mathrm{B})[5$ points]
(d) Construct any two 2×2 matrices and show that they dot commute.
[2points]

SECTION B

QUESTION 2 (20Points)

(a) (i) Given a 3×3 square matrix $A=$
find its transpose A and compute the product of the matrix and its transpose.
(ii) Find the inverse of the matrix $A=\left[\begin{array}{l}13 \\ 21\end{array}\right]$
(b) Given the two linear equations
$x+3 y=2$ and $2 x+y=3$, use matrix technique to solve for x and y.

QUESTION 3 (20Points)

(a) (i) Explain what is meant by a vector space.
(ii) Explain what is meant by a Hilbert space.
(iii) Explain what is meant by a linear operator.
(iv) Explain what is meant by linearly dependent set of vectors and a set of linearly independent vector.
(b) (i) Given the following matrix,
$A=\left[\begin{array}{l}(2+3 i) \ldots \ldots \ldots .(4-5 i) \\ 3 \ldots \ldots \ldots \ldots\end{array}\right]$
compute the Hermitian conjugate A^{+}
[4points]
(ii) Give an example of a unitary matrix and show that it, actually, is unitary.
[6points]
(a) If σ is a closed surface which encloses a volume τ, prove that
$\oiint n d=0$
[4points]
(b) Prove that $\iiint_{\tau} \nabla X A d \tau=\oiint_{\sigma} n X A d \sigma \quad$ [8points]
(c) Show that $\nabla X \nabla X A=\nabla \nabla \cdot A-\nabla^{2} A$
[8points]

