

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED SCIENCES

 MATHEMATICS AND PHYSICS DEPARTMENT
UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY DEGREE IN

APPLIED PHYSICS (BTAP)

EEE 4250: ANALOGUE ELECRONICS
END OF SEMESTER EXAMINATION
SERIES: May Series 2016:
TIME: 2 HOURS
DATE: May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID

- This paper consists of FIVE questions. Attempt Question ONE and any other TWO questions.
- Do not write on the question paper.
- Marks may be awarded for clear work showing steps followed.
- The following constants and \mathbf{h}-parameters may be useful:
i) Transistor 2N3904 h-parameters:
- $\quad h_{11}=3.5 \mathrm{k} ; h_{11}=1.3 \times 10^{-4} ; h_{21}=120 ; h_{22}=85 \mu \mathrm{~S}$
ii) Conversion to CB amplifier parameter
- $\quad h_{i b}=\frac{h_{i e}}{D}$
$-\quad h_{e b}=\frac{h_{i e} h_{o e}-h_{r e}\left(h_{f e}\right)}{D}$
$-\quad \mathrm{D} h_{f b}=\frac{\left.h_{f e}\left(1-h_{r e}\right)-h_{i e} h_{o e}\right)}{D}$
- $D=\left(1+h_{f e}\right)\left(1-h_{r e}\right)+h_{i e} h_{o e}$

QUESTION ONE (30MKS)

a) (i) What is a P-N junction? (1mk)
(ii) Sketch a labeled diagram to show a simple $\mathrm{P}-\mathrm{N}$ junction. (2mks)
(iii) Explain how to forward bias a PN junction. (2mks)
(iv) Explain how to reverse bias a PN junction. (2mks)
(v) What is a diode?
(2mrks)
b) (i) What is an operational amplifier?
(v) An operational amplifier has a voltage gain of 500 which falls to 100 when a negative feedback is applied. Calculate the feedback fraction, m .
c) (i) Explain what is meant by positive feedback of an operational amplifier. (1mk)
(ii) State four effects of positive feedback.
d) (i) What is an oscillator?
(ii) Differentiate between a damped oscillator and an undamped oscillator.
e) (i) Give any two h-parameters used to analyze a two port unloaded linear network of transistors.
(ii) Explain how the h-parameters you have given above are obtained.

QUESTION TWO (20MKS)

a) What happens inside the p-n Junction Diode?
b) Using a sketch diagram;
(i) Explain what happen when the diode is forward biased?
(ii) Explain what happens in the Reverse biased?
c) (i) What is a solar cell?
(ii) Using a sketch diagram explain how a solar cell operates.

QUESTION THREE (20MKS)

The circuit below is of a CB transistor amplifier. Study it and use it to answer the questions that follow. Given that the amplifier has a quiescent collector current of about 1 mA , use the h parameters for $\mathbf{2 N 3 9 0 4}$ to determine;
(a) $A_{i} ; \mathbf{A}_{\mathbf{v}} ; A_{i} \mathbf{Z}_{\mathbf{i n}}$ and $\mathbf{Z}_{\text {out }}$ for this amplifier.

b) If the h-parameter of the transistor were for CE configuration as follows: $h_{i e}=1000 \Omega$; $h_{r e}=-3.5 \times 10^{-4} ; h_{f e}=55$ and $h_{o e}=20 \mu S$. Find the current gain, A_{i} and voltage gain, A_{v} if r_{L} =2k Ω.

QUESTION FOUR (20MKS)

a) (i) What is a field Effect Transistor?
(ii) Sketch a labeled circuit symbol of a Field Effect Transistor. (2mks)
(iii) What is a bipolar transistor?
(iv) State one use of a bipolar transistor.
(v) Give any two types of Bipolar transistors.
(vi) What is a Solar cell?
b) Study the hybrid model shown below. The circuit demonstrates h-parameter analysis of a transistor network.

(i) Given that, $\mathrm{V}_{1}=35.2 \mathrm{mV}$ while $\mathrm{i}_{1}=0.013 \mathrm{~mA}$, determine h_{11}.
(ii) Given that, $\mathrm{i}_{2}=1.6 \mathrm{~mA}$ and $\mathrm{i}_{1}=0.03 \mathrm{~mA}$, determine h_{21}.
c) What are the following power electronic devices:

i. Diac.	$(1 \mathrm{mk})$
ii. Triac.	$(1 \mathrm{mk})$
iii. Thyristor.	$(1 \mathrm{mrk})$
iv. Silicon controlled rectifier.	$(1 \mathrm{mrk})$
v. Gate-Turn-Off switch.	$(1 \mathrm{mk})$
vi. Uni-junction transistor.	$(1 \mathrm{mk})$

QUESTION FIVE (20MKS)

a) (i) Differentiate between a positive and a negative feedback.
(ii) Give two ways in which negative feedback can be classified.
b) In a class A transistor operation amplifier, the Q-point is located at $200 \mathrm{~mA}, 10 \mathrm{~V}$. When a signal is applied, the collector current swings between 440 mA and 40 mA while the voltage swings between 12 V and 1 V respectively. Find the ;
i. Output AC power
ii. Output AC power
iii. Efficiency
(3mks)
iv. Power dissipated
c) A germanium transistor has a thermal resistor at its junction as $0.33^{\circ} \mathrm{C} / \mathrm{mW}$ and the apparent temperature is $28^{\circ} \mathrm{C}$. Calculate;
(i) the maximum power dissipation that can be allowed without heat sink.
(3mks)
(ii) the maximum power that can be allowed if a heat sink is used which reduces the thermal resistance of the transistor to $0.09{ }^{\circ} \mathrm{C} / \mathrm{mW}$.

END

