TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED \&HEALTH SCIENCES
MATHEMATICS \& PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS AND BACHELOR OF TECHNOLOGY IN
ENVIRONMENTAL PHYSICS \&RENEWABLE ENERGY
APS 4105: ELECTRICITY \& MAGNETISM I
END OF SEMESTER EXAMINATION
SERIES: MAY 2016
TIME: г HOURS
DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 4 questions.
Do not write on the question paper. Answer question ONE (compulsory) and any other two questions

DATA: Permeability of vacuum/free space, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of vacuum/ free space, $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
Electron charge, $q=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Proton mass, $=m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$

Question ONE

(a) (i) State Coulomb's law for the electrostatic force between two point charges. (1 mark)
(ii) Three identical point charges, each $1 \mu C$, are placed at the vertices of an equilateral triangle 10 cm a part. Calculate the force on each charge.
(4 marks)
(b) An isolated positive point charge $Q=2 \mu \mathrm{C}$
(i) Determine the elective field \vec{E} and also the potential, V, due to this charge at point P which is 10 cm away from the charge. (4 marks)
(ii) Determine the work done in bringing identical charge form infinity to point P (3 marks)
(iii) Sketch the electric field lines and equipotential lines associated with this isolated point charge
(c) A point charge $Q_{1}=+27 \mu C$ is placed at coordinate $(0,0)$ while another charge $Q_{2}=+3 \mu C$ is at $(1,0)$. At what point (other than infinity) would the net force on a third point charge be zero.
(d) A parallel plate capacitor has plates with dimension 3 cm by 4 cm separated by 2 mm . The plates are connected across a 60 V battery.
(i) Determine the capacitance and charge on each plate. (3 marks)
(ii) Determine the electric field within the plates and the energy stored (3 marks)
(iii) A dielectric material of relative dielectric constant 6 is now inserted and completely fills the space between the plates of the capacitor. Calculate the new charge stored. (3 marks)
(iv) Compute the electric force between the plates when the dielectric is in place. (3 marks)

Question TWO

(a) (i) State Gauss's law for electrostatics
(ii) A point charge q is at the centre of a spherical metal shell of radius R that has a net charge - Q. Determine the electric field and potential at a distance of outside the shell.
(4 marks)
(b) A non conducting disk of radius a has a uniform surface charge density $\sigma \mathrm{Cm}^{-2}$. Determine the electric field strength at a distance y from the centre along the central axis.
(5 marks)
(c) An electron enters the region between two horizontal charged plates with an initial horizontal velocity of $\mu=10^{6} \mathrm{~ms}^{-1}$ midway between the two plates. The plates are 4 cm long and 1.6 cm apart, see figure 1 below. The electric field within the plates is $450 \mathrm{Vm}^{-1}$.
(i) Determine the vertical displacement from the initial horizontal position that the electron undergoes within the plates.
(ii) Determine the magnetic field strength that can be introduced within the electric field so that the electron pass through the plates undeflected. Show the orientation of the magnetic field. (5 marks)

Figure 1

Question THREE

(a) The radius of a copper wire is 1.63 mm . A potential difference (p.d) of 60 V is applied across a 20 m length of this wire. Resistivity of copper $=1.7 \times 10^{-8} \Omega \mathrm{~m}$. Find
(i) The current
(ii) The electric field
(b) Derive an expression for the current density, J, for a current carrying wire of cross sectional area, A. Explain any symbols used. (3 marks)
(c) In the circuit of figure 2, the cell E_{1} has an emf of 15 V and internal resistance of 2Ω; the cell E_{2} has emf of 6 V and internal resistance of 3Ω; and the E_{3} has emf of 4 V and internal resistance of 1Ω. In the circuit $R_{1}=4 \Omega, R_{2}=3 \Omega$ and $R_{3}=2 \Omega$. Determine the currents i_{1}, i_{2} and i_{3}. (7 marks)

Figure 2
(d) Two capacitors $C_{1}=0.1 \mu F$ and $C_{2}=0.25 \mu F$ are connected to a12V battery.
(i) Determine the charge on each capacitor (2 marks)
(ii) Calculate the potential difference across each capacitor. (3 marks)

Question FOUR

(a) Two long straight wires are 3 cm apart. They carry currents $\mathrm{I}_{1}=3 \mathrm{~A}$ and $\mathrm{I}_{2}=5 \mathrm{~A}$ in opposite directions, as shown in figure3. I_{1} is out of paper while I_{2} is into the paper.

Figure 3
(i) Draw the magnetic field lines associated with these wires. (2 marks)
(ii) Indicate the force experienced by the wires and compute the force per unit length on the wire. (3marks)
(iii) Calculate the magnetic field strength at point P. (3marks)
(b) An electron with kinetic energy $10^{3} \mathrm{eV}$ moves perpendicular to the lins of a uniform B

$$
\mathbf{B}=10^{-3} \mathrm{~T}
$$

(i) If \vec{B} is into the paper, sketch the path of the electron (1 mark)
(ii) Determine the period, and (3 marks)
(iii) Compute the radius of the electron orbit in the field. (4 marks)
(c) An electron has a velocity of $V=10^{6} \mathrm{~J} \mathrm{~ms}^{-1}$ in the field $\vec{B}=0.052 \mathrm{~T}$. What is the force on the electron?
(4 marks)

