

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

AMA 5106: TEST OF HYPOTHESIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 3 HOURS

DATE:MAY

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of five questions. Attempt QUESTION ONE and any other TWO. **Do not write on the question paper.**

Question ONE

- a. State and prove Neyman-Pearson Lemma (8 marks)
- b. A manufacturer is interested in the output voltage of apower supply used in a PC. Output voltage is assumed to benormally distributed, with standard deviation 0.25 Volts, and the manufacturer wishes to test H_0 ; ~ = 5 Volts against H_1 ; ~ \neq 5 Volts, using 8 units.
- i. The acceptance region is $4.85 \le \overline{x} \le 5.15$ Find the level of significance.(4marks)
- ii. Find the power of the test for detecting a true mean outputvoltage of 5.1 Volts.(5marks)
 - c. Show that the class of all test functions is a convex function (3marks)
 - d. Define the power function of a test

- (4marks)
- e. Show that 1-parameter exponential family has a monotone likelihood ratio. (6marks)

Question TWO

a. Let x be a random variable with probability density function f(x). Find a size Γ test for;(7marks)

$$H_0; f(x) = f_0(x) = \frac{1}{\sqrt{2f}} e^{\frac{-x^2}{2}}$$
$$H_1; f(x) = f_1(x) = \frac{1}{f} \frac{1}{1+x^2}$$

- b. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(0, \uparrow^2)$ random variables. Determine whether there exists a uniform most powerful test for the hypothesis of the form H_0 ; $\uparrow^2 = \uparrow^2_0$ against H_1 ; $\uparrow^2 = \uparrow^2_1$ (8 marks)
- c. Show that for testing H_0 ; "_1 \leq " \leq "_2 against H_1 ; " < "_1 or " > " $_2$ there exists a uniform most

powerful unbiased size
$$\Gamma$$
 test given by $W(x) = \begin{cases} 1 & if \quad T(x) > c_1 \\ \notin & if \quad T(x) = c_2 \\ 0 & if \quad c_1 < T(x) < c_2 \end{cases}$ (5 marks)

Question THREE

- a. Define an unbiased test (5 marks)
- b. If the pdf f(x; ,) are such that the power function of every test is continuous and if W_0 is uniform most powerful among all tests satisfying some conditions and is level Γ test, then show that W_0 is unbiased. (5 marks)

c. Let
$$X \sim bin(n, p)$$
, find an unbiased size Γ test for $\begin{array}{c} H_0; p = p_0 \\ H_1; p = p_1 \end{array}$ against (10 marks)

Question FOUR

- a. Let $x_1, x_2, ..., x_n$ be independently identically distributed $N(\sim, \uparrow^2)$ random variables, Let $y_1, y_2, ..., y_n$ be independently identically distributed $N(\sim, \uparrow^2)$ random variables. Where \uparrow^2 is common. Suppose X'_i s and Y'_i s are independent. Determine a size Γ LRT test for H_0 ; $\sim = \sim_0$ against H_1 ; $\sim \neq \sim_0$ (10 marks)
- b. Let $x_{i1}, x_{i2}, ..., x_{in}$ be independent normally distributed random variables with mean \sim_i and variance \dagger_i^2 . Determine a Γ likelihood ratio test for the hypothesis of the form H_0 ; $\dagger_i^2 = \dagger_j^2$ against H_1 ; $\dagger_i^2 \neq \dagger_i^2$ (10 marks)

Question FIVE

- a. Determine a Γ likelihood ratio test for the hypothesis of the form H_0 ; $\uparrow^2 = \uparrow^2_0$ against H_1 ; $\uparrow^2 = \uparrow^2_1$ (~ is unknown) (10marks)
- b. Let $y_1, y_2, ..., y_n$ be independently identically distributed $N(S_{n_1})^2$ random variables. Find a size Γ likelihood ratio test for testing H_0 ; $S = S_0$ against H_1 ; $S \neq S_0$ (10 marks)