TECHNICAL UNIVERSITY OF MOMBASA BFSQ/BTAC

Α

AMA4109: CALCULUS FOR SCIENCES

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO

QUESTION ONE (30MARKS)

- (a) If $A = \{x \mid -3 \le x \le 2, x \in \sqcup\}$ and a function $f : A \to \sqcup$ is defined by $f(x) = x^2 \forall x \in A$, find the range of f and state whether it is onto or not. (3mks)
- (b) Find the derivatives of the following functions with respect to x

(i)
$$y = x^5 \sin x$$
. (2mks)

(ii)
$$x^3 + 3y^6 = y^3$$
. (3mks)

(c) Evaluate the following limits

(i)
$$\lim_{x \to -1} \frac{x+1}{x^2-1}$$
. (3mks)

(ii)
$$\lim_{x \to \infty} \sqrt{x^2 + 1 - x}$$
. (3mks)

- (d) (i) Use first principles to differentiate $f(x) = x^2 + 2$. (3mks) (ii) Hence use the result in (i) to find the tangent line to f(x) at x = -2. (3mks)
- (e) Find the following integrals

(i)
$$\int 20x(x^2+3)^7 dx$$
. (3mks)

(ii)
$$\int x e^{-x^2} dx$$
. (3mks)

(f) Given that $x = t^3 - 3t^2$ and $y = t^3 - 3t$, find $\frac{dy}{dx}$. (4mks)

QUESTION TWO (20MKS)

(a) Suppose f(2) = 11, f'(2) = 12, g(2) = 7 and g'(2) = 4. Evaluate

$$\left(\frac{f}{g}\right)'(2) + \left(fg\right)'(2). \tag{3mks}$$

- (b) (i) Let f be a function defined at points near a (except possibly at a). Let L be a real number. Use v u notation to define L as a limit of f. (2mks)
 - (ii) Use the definition in (i) to show that

$$\lim_{x \to 2} 2x - 3 = 1. \tag{4mks}$$

(c) Let $f, g: \mathcal{R} \to \mathcal{R}$ such that f(x) = x + 1 and $g(x) = x^2 + 3$.

(i) Compute
$$h = f_O g$$
. (2mks)

(ii) Find
$$f^{-1}, g^{-1}$$
 and h^{-1} . (3mks)

(iii) Compute
$$g^{-1}_{O}f^{-1}$$
, compare this to (ii) and make any relevant deduction.

(d) Show that if
$$y = \sec^{-1} \sqrt{1 + x^2}$$
 then $\frac{dy}{dx} = \frac{1}{1 + x^2}$. (4mks)

QUESTION THREE (20MKS)

- (a) Suppose $g(x) = f^{-1}(x)$ and $G(x) = \frac{1}{g(x)}$. Given that f(3) = 2, and $f^{-1}(3) = \frac{1}{9}$, find G'(2). (4mks)
- (b) Calculate the volume of the solid generated by rotating about the *x*-axis the area bounded by $f(x) = 4 - x^2$ and the *x*-axis. (5mks)
- (c) Find the linearization of $f(x) = \sqrt{x+3}$ at x = 1 and use it to approximate $\sqrt{4.05}$. (5mks)
- (d) The parametric equations of a curve are $x = e^t$ and $y = \sin t$. Find $\frac{dy}{dx}$ and

$$\frac{d^2 y}{dx^2}$$
. Hence show that $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$. (6mks)

QUESTION FOUR (20MKS)

- (a) Find the equation of the normal to the curve $y = x + \sqrt{x}$ at (1, 2). (3mks)
- (b) Find the absolute maximum and minimum of $f(x) = x^3 12x + 1$ on $-3 \le x \le 5$).

(4mks)

(c) Decompose the following rational fraction

$$\frac{2x^2 + 6x - 4}{x(x+2)^4}$$
(4mks)

(d)Air is being pumped into a spherical balloon so that its volume increases at 100cm³/s. How fast is the radius increasing when the diameter is 50 cm? (3mks)

(e) A particle *P* travels in a straight line and its distance *x* meters from a fixed point *A* on the line at time *t* seconds is given by $x = 2t^3 - 15t^2 + 36t + 20$. Find the values of *x* at the points where the velocity is zero. (6mks)

QUESTION FIVE(20MKS)

- (a) Use logarithmic differentiation to find $\frac{dy}{dx}$
 - (i) $y = x^2 \sqrt{(x+2)}$. (2mks)

(ii)
$$y = \log_2(x^3 + 5)$$
 (4mks)

(b) Integrate

(i)
$$\int \frac{x^2}{\cos^2 x^3} dx$$
 (3mks)
(ii)
$$\int \frac{1}{\cos^2 x^3} dx$$
 (3mks)

- (ii) $\int_{a}^{a} \sin_{a} d_{a}$ (3mks)
- (c) A metal sheet has measurements 8 by 5 metres. Equal squares of side x metres are removed from each corner and the edges are then turned up to make an open box of volume V m³.

(i) Show that
$$V = 40x - 26x^2 + 4x^3$$
. (2mks)

(ii) Find the maximum possible volume and the corresponding value of *x*. (6mks)