TECHNICAL UNIVERSITY OF MOMBASA

SCHOOL OF APPLIED AND HEALTH SCIENCES

MATHEMATICS AND PHYSICS
UNIVERSITY EXAMINATION FOR:
UNIT: CONTINUUM MECHANICS

UNIT CODE: AMA 4437

END OF SEMESTER EXAMINATION

SERIES: MAY SERIES

TIME: 2HOURS

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of five questions. Attempt Question one and any other two.
Do not write on the question paper.

Question ONE

a). Show that $\frac{\partial A p}{\partial X^{q}}$ is not a tensor even though $\mathrm{A} \rho$ is a tensor of rank one. (5 mks)
b). Determine metric tensor in:
i. Cylindrical co-ordinates
ii. Spherical co-ordinates (6mks)
c). Differentiate between Body forces and Surface forces giving an example of each. (4mks)
d). If the velocity component of a 2-D flow is given by

$$
U(x / y)=\frac{\mathrm{k}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{\mathrm{x}^{2}+\mathrm{y}^{2}} \quad \mathrm{~V}(x / y)=\frac{2 \mathrm{k} x y}{\mathrm{x}^{2}+\mathrm{y}^{2}}
$$

Show that the flow is incompressible. (6mks)
e). Define:
i. Normal Stress (2mks)
ii. Shear Stress (2mks)
f). In a 3-D incompressible fluid the velocity component in $x \& y$ direction and

$$
\begin{aligned}
& \mathrm{U}=x^{2}+y^{2} \\
& \mathrm{~V}=\mathrm{x}+y x+y z
\end{aligned}
$$

Use continuity equation to evaluate an expression for the velocity component in x-direction. (5mks)

Question TWO

a). Prove that:
i. $\frac{\partial x^{p}}{\partial X^{-q}} \frac{\partial x^{-q}}{\partial X^{r}}=\delta_{r}^{p} \quad(3 \mathrm{mks})$
ii. $\quad \delta_{r}^{p}$ is a mixed tensor of rank $2 \quad(4 \mathrm{mks})$
b). Show that the contraction of the other multiplication of the tensor A^{p} and B_{q} is an invariant. (6 mks)
c). A quantity $\mathrm{A}(\mathrm{p}, \mathrm{q}, \mathrm{r})$ is such that in the co-ordinate system $X^{\text {q }}$
$\mathrm{A}(\mathrm{p}, \mathrm{q}, \mathrm{r}) B_{r}^{q s}=C_{p}^{s} \quad$ when $\quad B_{r}^{q s}$ is an aborting tensor and C_{p}^{s} is a tensor. Prove that $A(p, q, r)$ is a tensor. (7mks)

Question THREE

1. In a 3-D incompressible flow the velocity component in z and w directions are:

$$
\mathrm{V}=\mathrm{a} x^{3}-b y^{2}+c z^{2} \quad \mathrm{~W}=\mathrm{b} x^{3}-\mathrm{cyz}+a z^{2} \mathrm{x}
$$

a) Determine the missing component of velocity distribution so that the continuity equation is satisfied. (6mks)
b) Verify if the velocity component satisfies the continuity equation.

$$
\begin{equation*}
\mathrm{U}=2 x^{2}+3 y \quad \mathrm{~V}=-2 \mathrm{xy}+3 y^{2}+3 z y \quad \mathrm{~W}=-3 / 2 z^{2}-2 x z-6 y z \tag{5mks}
\end{equation*}
$$

c) The velocity vector of an incompressible flow is given by
$\mathrm{V}=\left(6 \mathrm{xt}+y z^{2}\right) \mathbf{i}+\left(3 \mathrm{t}+x y^{2}\right) \mathrm{j}+(\mathrm{xy}-2 \mathrm{xyz}-6 \mathrm{tz}) \mathrm{k}$
i. Determine the acceleration at a point $\mathrm{P}(2,2,2) \quad(4 \mathrm{mks})$
ii. Verify if it satisfies the continuity equation (5mks)

Question FOUR

a). Discuss the flow for which $w=Z^{2} \quad(5 \mathrm{mks})$
b). If $\mathrm{Q}=\mathrm{A}\left(x^{2}-y^{2}\right)$ represent a possible flow phenomena. Determine the stream function. (4mks)
c). Determine the stream function $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{t})$ for the given velocity field.

$$
\begin{array}{lr}
\mathrm{U}=\mathrm{ut} & \mathrm{~V}=\mathrm{x} \\
\mathrm{U}=-\frac{\partial \varphi}{\partial y} & \mathrm{~V}=\frac{\partial \varphi}{\partial x} \tag{7mks}
\end{array}
$$

d). If the potential of stream function is described by:

$$
\varphi=x^{3}-3 x y^{2}
$$

Determine whether the flow is rotational or irrotational (4mks)

Question FIVE

a). The tensor D is given by the algebraic equation $D=A: B$. Obtain the order of the tensor D and its components for the following cases.
i. When $A_{i j}=\left|\begin{array}{ccc}-2 & 3 & 2 \\ 4 & \mathbf{1} & 1 \\ 1 & \mathbf{1} & 5\end{array}\right| \quad, \quad B_{i j}=\left|\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 5\end{array}\right|$
ii. When $A_{i k} B_{q j}=\left|\begin{array}{ccc}7 & 13 & 14 \\ 11 & 18 & 11 \\ 16 & 27 & 31\end{array}\right|, \quad A_{i k} B_{j k}=\left|\begin{array}{ccc}13 & 9 & 17 \\ 15 & 9 & 13 \\ 18 & 12 & 32\end{array}\right| \quad$ (4mks)
b). Starting from the fundamental equation of continuum mechanics, obtain the growing equation for a rigid solid problem.

