DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DIPLOMA IN BUILDING AND CIVIL ENGINEERING

SEMESTER EXAMINATIONS

ENGINEERING DRAWING I

TIME: 3 HOURS

Instructions to Candidates

1. You should have the following for this examination:

- Tee square
- Set square
- Drawing set
- Drawing paper(s) size A2
- Scale rule

2. This paper consists of FIVE.
3. Answer Question ONE (Compulsory) and any other TWO Questions.
4. Question ONE carries 30 marks while question 2, 3, 4 and 5 carry 20 marks each.
5. Maximum marks for each part of a question are as indicated.

Question ONE

(a). Briefly explain any THREE uses of drawings in engineering. (4 $1 / 2$ Marks)
(b). Using the auxiliary circles method construct an ellipse whose major and minor axes measure 100 mm and 60 mm respectively.
(8 Marks)
(c). Construct a hyperbola within a rectangle measuring 100 mm by 80 mm with a transverse axis of 95 mm .
(8 Marks)
(d). Figure 1 shows a wheel, 60 mm in diameter, in contact with a flat surface. Draw the locus of the contact point ' P ', on the wheel, as the wheel rolls without slipping for one complete convolution Name the locus.
($911 / 2$ Marks)

Fig. 1

Question TWO

Figure 2 below shows a line diagram of a slider and crank mechanism. Rod AB is pin-jointed to crank BO at B. Crank BO is allowed to oscillate about center O. The slider A is constrained to move along groove XY while crank OB oscillate about centre O. Plot the locus of point P on the connecting rod $A B$ as end A of the rod slides towards point X .
(20 Marks)

Fig. 2

Question THREE

Figure 3 shows a truncated right cone. In first angle projection draw:-
(a). The given view
(b). The plan
(c). Elevation as seen in the direction of arrow P.
(d). The true shape of the cut section. Name the shape produced.

Fig. 3

Questions FOUR

P is a point moving such that its distance from a fixed point is equal to its perpendicular distance from a fixed straight line. Using 20, 25, 30, 40, 50, and 70 as distances from the fixed point, plot the locus of point P and name the curve so produced.
(20 Marks)

Question FIVE

Figure 4 below shows a side elevation of a Truncated cylinder. In third angle projection draw;
(a). The given view.
(b). The plan
(c). Elevation as seen in the direction of arrow Z.
(d). The true shape of the cut section.

Fig. 4
(20 Marks)

