TECHNICAL UNIVERSITY OF MOMBASA

END OF SEMESTER EXAMINATION

AMA 4212 VECTOR ANALYSIS

QUESTION ONE (3OMKS)

a) Given $\vec{r}_{1}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{r}_{2}=2 \hat{i}-4 \hat{j}-3 \hat{k}, \hat{r}_{3}=-\hat{i}+2 \hat{j}+2 \hat{k}$, find $\left|\vec{r}_{1}+\vec{r}_{2}+\vec{r}_{3}\right|$
b) Find the area of a triangle having vertices $p(1,3,2), Q(2,-1,1), R(-1,2,3)$
c) Find an equation of the plane perpendicular to vector $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ and passing through the terminal point of the vector $\vec{B}=\vec{i}+5 \hat{j}+3 \hat{k}$
d) Find a unit normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$
e) Given $F=\left(2 x y+z^{3}\right) i+x^{2} j+3 x z^{2} k$
i. Show that F is a conservative force field
ii. Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$ (4mks)
f) Verify green's theorem in the plane for $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is a closed curve of the region bounded by $y=x, y=x^{2}$
g) Evaluate $\iint_{R} x y d x d y$ over the region R is the region bounded by x-axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$
(4mks)

QUESTION TWO (2OMKS)

a) If $\vec{A}=5 t^{2} \hat{i}+t \hat{j}+-t^{3} \hat{k}$ and $B=\sin t \hat{i}-\cos t \hat{j}$ Find:
i. $\frac{d}{d t}(A . B)$
ii. $\frac{d}{d t}(A \times B)$
(4mks)
(4mks)
b) Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 i-j-2 k$
(4mks)
c) Evaluate $\iiint_{v} F d v$ where $\vec{F}=x y \hat{i}+z \hat{j}-x^{2} \hat{k}$ and V is the region bounded by surfaces

$$
x=0, x=2, y=0, y=3, z=0, z=4
$$

d) Find the constants a, b, c so that $v=(x+z y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ is irrotational.

QUESTION THREE (2OMKS

a) Find an equation for tangent plane to the surface $2 x z^{2}-3 x y-4 x=7$ at the point $(1,-1,2)$
(4mks)
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-3$ at the point $2,-1,3$
(6mks)
c) The acceleration of a particle at any time $t \geq 0$ is given by $a=12 \cos 2 t \hat{i}-8 \sin 2 t \hat{j}+16 t \hat{k}$. If the velocity v and displacement r are zero at $t=0$. Find v and r at any time
d) Find a unit tangent vector to any point on the curve $x=a \cos \omega t, y=a \sin \omega t, z=b t$ where a, b, ω are constants.

QUESTION FOUR (2OMKS

a) Find the constant a such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, i+2 \hat{j}-3 \hat{k}, 3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar.
b)
i. State the Gauss divergence theorem
(3mks)
ii. Verify the divergence theorem for $A=(2 x-z) i+\left(x^{2} y\right) j-x z^{2} k$ taken over the region bounded by $x=0, x=1, y=0, y=1, z=0, z=1$

QUESTION FIVE (2OMKS)

a) Determine the constant a so that the vector $V=(x+3 y) \vec{i}+(y-2 x) \vec{j}+(x+a z) \vec{k}$ is soleinodal.
b) Given the space curve $x=t, y=t^{2}, z=2 / 3 t^{2}$ find,
i. The unit tangent T
ii. The principal normal N
iii. The curvature k
iv. The radius of curvature
v. The binormal B

