TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4410: PARTIAL DIFFERENTIAL EQUATIONS 1

END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS

DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper. PAPER 2

QUESTION ONE (30 MARKS)

a. Solve the linear PDE $p+3 q=5 z+\tan (y-3 x)$
b. Derive a PDE by eliminating the arbitrary function ϕ from the equation

$$
\begin{equation*}
\phi\left(x^{3}+y^{3}+z^{3}, z^{3}-2 x^{2} y^{2}\right)=0 \tag{6marks}
\end{equation*}
$$

c. Classify each of the following equations as elliptic, parabolic or hyperbolic

$$
\begin{align*}
& \text { i. } u_{x x}+u_{y y}=0 \tag{2marks}\\
& \text { ii. } u_{x x}+3 u_{x y}+4 u_{y y}+5 u_{x}-2 u_{y}+4 u=2 x-3 y \tag{2marks}
\end{align*}
$$

d. Find the general solution of $r-3 s+2 t=e^{x+y}$
e. Find the equation of the surface satisfying the equation $4 y z p+q+2 y=0$ and passing through $y^{2}+z^{2}=1, x+z=2$.

QUESTION TWO (20 MARKS)

a. Find the complete integral of $2 p_{1} x_{1} x_{3}+p_{2}^{2} p_{3}+3 p_{2} x_{3}^{2}=0$ using the Jacobi's method.
(10 marks)
b. Use Charpit's method to find the complete integral of $x p+q=p^{2}$
(10 marks)

QUESTION THREE (20 MARKS)

a. Derive a PDE by eliminating the arbitrary constants a and b from

$$
\begin{equation*}
z=a x^{2}+b y^{2}+a b . \tag{5marks}
\end{equation*}
$$

b. A string of length L is stretched between points $(0,0)$ and $(L, 0)$ on the x axis. At time $t=0$ it has a shape given by $f(x), \quad 0 \leq x \leq L$ and it is released from rest. Find the displacement of the string at any latter time.

QUESTION FOUR (20 MARKS)

a. Solve the heat conduction equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}, \mathrm{k}=$ constant subject to the following boundary conditions: $\begin{cases}u(x, 0)=f(x), & 0 \leq x \leq L \\ \left.\frac{\partial u}{\partial x}\right|_{x=0}=\left.\frac{\partial u}{\partial x}\right|_{x=L}=0, & t \geq 0\end{cases}$
b. Solve $\left(D_{x}{ }^{2}-D_{x} D_{y}-2 D_{y}{ }^{2}+3 D_{x}+2\right) z=0$

QUESTION FIVE (20 MARKS)

a. Show that the orthogonal trajectories on the hyperboloid $x^{2}+y^{2}-z^{2}=1$ of a conic in which it is cut by the system of planes $x+y=c$ are the curves of intersection with the family of surfaces $(x-y) z=k$ where k is a parameter.

Find the integral curves of the equations $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$

