TECHNICAL UNIVERSITY OF MOMBASA

UNIVERSITY EXAMINATIONS 2015/2016
AMA 4214 CLASSICAL MECHANICS

SECOND YEAR SECOND SEMESTER EXAMINATIONS FOR THE BACHELOR OF SCIENCE DEGREE IN MATHS AND COMPUTER SCIENCE.

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE

a) The power applied to a particle by a force field is given as a function of time by $p(t)=3 t^{2}-4 t+2$. Find the work done in moving a particle from $t=2$ to $t=4(4 \mathrm{mks})$
b) A particle moves so that the position vector is given by $\vec{r}=a \cos \omega t \hat{i}+a \sin \omega t \hat{j}$ where ω is a constant. Show that the velocity \vec{v} of the particle is perpendicular to \vec{r}
c) Show that the force field $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is conservative. (5 mks)
d) A particle moves on a circle of radius 20 cm . If it's tangential speed is $40 \mathrm{~cm} / \mathrm{s}$, Find :
i. It's angular speed
ii. Angular and normal acceleration
iii. Arc length covered in time $\mathrm{t}=5$ seconds
e) Show that the equation $x=3+4 \cos 2 t+3 \sin 2 t$ executes simple harmonic motion (SHM), hence find the centre, time period and phase angle.
f) A particle is projected with a velocity of $50 \mathrm{~ms}^{-1}$ at an elevation of 35°. Find the greatest height reached, the time of flight and the horizontal range (take $g=9.8 m^{-2}$)

QUESTION TWO

a)
i. State Newton's first and second law of motion.
(4mks)
ii. Find the constant force needed to accelerate a mass of 40 kg from the velocity $(4 \hat{i}-5 \hat{j}+3 \hat{k}) \mathrm{m} / \mathrm{s}$ to the velocity $(8 \hat{i}+3 \hat{j}-5 \hat{k}) \mathrm{m} / \mathrm{s}$ in 20 seconds.
iii. What is the magnitude of the force in (ii)
iv. Find the work done on the particle in motion of 20 sec
b) A mass of 2 kg oscillating on a spring with a spring's constant $4 \mathrm{~N} / \mathrm{m}$ passes through its equilibrium point with velocity $8 \mathrm{~m} / \mathrm{s}$. Determine:
i. the energy of the system at this point
ii. the maximum displacement of the mass
c) A fly wheel of diameter 1.1 m , rotating at $1200 \mathrm{rev} / \mathrm{min}$ slows down at a constant rate to $900 \mathrm{rev} / \mathrm{min}$ in 30s. Find:
i. angular acceleration
ii. the initial speed of a point on the rim of the fly wheel.

QUESTION THREE

a) A car of mass 100 kg moves uphill along a street inclined at 30° to the horizontal.

Determine the force which the car must produce to move with
i. Uniform motion
ii. An acceleration of $0.4 \mathrm{~m} / \mathrm{s}^{2}$
b) A particle moves on a space curve defined by the parametric equation $x=t, y=1 / 2 t^{2}, z=t$ Find :
i. the velocity
ii. the acceleration
iii. tangential acceleration
iv. normal acceleration
v. the principal normal
(2mks)
(2mks)
(2mks)
(4mks)
(2mks)

QUESTION FOUR

a)
i. Define a uniform force field
ii. Prove that a uniform force field is always conservative.
iii. Find the potential of a uniform force field
b) A parachutist falls from rest under gravity and the air resistance is $m k v^{2}$, where v is the velocity, k is a positive constant and m is the mass of the parachutist and the parachute. Find v in terms of the distance fallen x and also in terms of time t

QUESTION FIVE (20mks)

a) A particle of unit mass moves along a space curve defined by $\vec{r}=a \cos \omega t \hat{i}+b \sin \omega t \hat{j}$ where a, b, ω are constants. Find:
i. Torque
ii. Angular momentum about the origin.
iii. Impulse developed by the force field between $t=0$ to $t=\pi / 2 \omega$ (5mks)
iv. Show that the impulse in © is equal to change in momentum.

