

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DIPLOMA IN CIVIL ENGINEERING AND CAD

DCC 07 (A & B)

FINAL EXAMINATIONS

APRIL/MAY 2010 SERIES

MATHEMATICS

TIME: 2 HOURS

Instructions to Candidates

This paper consists of TWO Sections: Section I and II.

Section I: has **30** marks and Section II has **40 marks**.

Attempt ALL Question in Section I and ONLY TWO Questions from Section II.

Calculators and mathematical tables allowed.

© Department of Building and Civil Engineering

SECTION I

Question ONE

Differentiate following functions:

(i).
$$\sin(3x^2 + 2)$$

(ii).
$$e^{4t}$$

Question TWO

Solve:

 $\frac{dy}{dx} = xy - y$

(3 Marks)

(4 Marks)

Question THREE

The distribution shown represents marks awarded to students after an assessment.

Marks	0 – 10	10 – 20	20 - 30	30 – 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	5	8	7	12	28	20	10	10

Determine:

- (a). First quartile
- (b). Second quartile
- (c). Third quartile

(6 Marks)

Question FOUR

Integrate the following functions with respect to x.

(a). $\frac{1}{\sqrt{(9-x^2)}}$

(b). $(x-2)^2$

(6 Marks)

Question FIVE

- (a). Determine the area of a parallelogram whose sides are given by the vectors. A = 3i-3j+2k B = -2i-3j+2k (5 Marks)
- (b). Determine a positive constant α such that the angle between the vectors. $u = \alpha(i+j)$ and $v = i + \alpha j$ is $\frac{\pi}{6}$ radius.

(6 Marks)

SECTION II

Attempt TWO Questions ONLY from this Section (40 Marks)

Question SIX

A company monitored the number of days(x) of business trips taken by executives of the company and the corresponding claims (£y) they submitted to cover the total expenditure of these trips.

A random sample of 10 trips gave the following results.

X(days)	10	3	8	17	5	9	14	16	21	13
Υ£	116	39	85	159	61	94	143	178	225	134

(a). Plot these data on a scatter diagram.

(4 Marks)

(b). Find an equation of the regression time of y and x in the form of y = a + bx.

(6 Marks)

(c). Find the expected expenditure of a trip lasting 11 days.(2 Marks)

A machine hire company kept records of the ages x months, and the maintenance costs, £y, of machine. The following table summarizes the data for a random sample of 10 machines.

Machine	Α	В	С	D	E	F	G	Н	Ι	J
Age x	62	12	34	81	51	14	45	74	24	89
Maintenance	111	25	41	181	64	21	51	145	43	241
costs y										

Calculate to (3 decimal places) the product-moment correlation coefficient.

(8 Marks)

Question SEVEN

- (a). A construction company investment on machinery was (i). Kshs.150,000/- in the first year and Kshs.250,000/- each for the following 15 years. Determine the company's total investment in machinery after 10 (3 Marks) years.
 - Determine an approximate value of $\sqrt{10}$ by substituting $x = \frac{1}{0}$ in the (ii). binomial expansion of $(1+x)^{\frac{1}{2}}$ upto the term in x^3 .
- The fourth term of a geometric series is 10 and the seventh term of the (b). series is 80. For this series, find:
 - the common ratio (a).
 - (b). the first term
 - the sum of the first 20 terms, giving your answer to the nearest whole (c). (2 Marks) number.

Question EIGHT

(a). The figure below shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is 100m³.

Show that the area A m² of the sheet metal used to make the tank is (i) given by:

$$A = \frac{300}{x} + 2x^2$$
 (4 Marks)

(4 Marks)

(8 Marks)

(3 Marks)

(ii) Use calculus to find the value of x which A is stationary.

(4 Marks)

(iii) Prove that this value of x gives a minimum value of A.

(2 Marks)

(iv) Calculate the minimum area of sheet metal needed to make the tank (2 Marks)

(b). (i). Express
$$\frac{2x-1}{(x-1)(2x-3)}$$
 in partial fractions. (3 Marks)

(ii). Given that $x \ge 2$, find the general solution of the differential equation $(2x-3)(x-1)\frac{dy}{dx} = (2x-1)y$ (5 Marks)