MATHEMATICS

TIME: 2 HOURS

Instructions to Candidates

This paper consists of TWO Sections: Section I and II.
Section I: has 30 marks and Section II has 40 marks.
Attempt ALL Question in Section I and ONLY TWO Questions from Section II. Calculators and mathematical tables allowed.

SECTION I

Question ONE

Differentiate following functions:
(i). $\quad \sin \left(3 x^{2}+2\right)$
(ii). $e^{4 t}$
(4 Marks)

Question TWO

Solve:
$\frac{d y}{d x}=x y-y$
(3 Marks)

Question THREE

The distribution shown represents marks awarded to students after an assessment.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	5	8	7	12	28	20	10	10

Determine:
(a). First quartile
(b). Second quartile
(c). Third quartile
(6 Marks)

Question FOUR

Integrate the following functions with respect to x .
(a). $\frac{1}{\sqrt{\left(9-x^{2}\right)}}$
(b). $(x-2)^{2}$
(6 Marks)

Question FIVE

(a). Determine the area of a parallelogram whose sides are given by the vectors.
$A=3 i-3 j+2 k$
$B=-2 i-3 j+2 k$
(5 Marks)
(b). Determine a positive constant α such that the angle between the vectors. $u=\alpha(i+j)$ and $v=i+\alpha j$ is $\frac{\pi}{6}$ radius.
(6 Marks)

SECTION II

Attempt TWO Questions ONLY from this Section (40 Marks)

Question SIX

A company monitored the number of days(x) of business trips taken by executives of the company and the corresponding claims ($£ \mathrm{y}$) they submitted to cover the total expenditure of these trips.

A random sample of 10 trips gave the following results.

\mathbf{X} (days)	10	3	8	17	5	9	14	16	21	13
$\mathbf{Y} £$	116	39	85	159	61	94	143	178	225	134

(a). Plot these data on a scatter diagram.
(4 Marks)
(b). Find an equation of the regression time of y and x in the form of $y=a+b x$.
(6 Marks)
(c). Find the expected expenditure of a trip lasting 11 days.(2 Marks)

A machine hire company kept records of the ages x months, and the maintenance costs, $£ y$, of machine. The following table summarizes the data for a random sample of 10 machines.

Machine	A	B	C	\mathbf{D}	\mathbf{E}	F	G	H	\mathbf{I}	\mathbf{J}
Age x	62	12	34	81	51	14	45	74	24	89
Maintenance costs y	111	25	41	181	64	21	51	145	43	241

Calculate to (3 decimal places) the product-moment correlation coefficient.
(8 Marks)

Question SEVEN

(a). (i). A construction company investment on machinery was Kshs.150,000/- in the first year and Kshs.250,000/- each for the following 15 years.
Determine the company's total investment in machinery after 10 years.
(3 Marks)
(ii). Determine an approximate value of $\sqrt{10}$ by substituting $x=\frac{1}{9}$ in the binomial expansion of $(1+x)^{1 / 2}$ upto the term in x^{3}.
(8 Marks)
(b). The fourth term of a geometric series is 10 and the seventh term of the series is 80 . For this series, find:
(a). the common ratio
(4 Marks)
(b). the first term
(3 Marks)
(c). the sum of the first 20 terms, giving your answer to the nearest whole number.
(2 Marks)

Question EIGHT

(a). The figure below shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is $100 \mathrm{~m}^{3}$.
(i) Show that the area Am^{2} of the sheet metal used to make the tank is given by:

$$
\begin{equation*}
A=\frac{300}{x}+2 x^{2} \tag{4Marks}
\end{equation*}
$$

(ii) Use calculus to find the value of x which A is stationary.
(4 Marks)
(iii) Prove that this value of x gives a minimum value of A.
(2 Marks)
(iv) Calculate the minimum area of sheet metal needed to make the tank
(2 Marks)
(b). (i). Express $\frac{2 x-1}{(x-1)(2 x-3)}$ in partial fractions.
(3 Marks)
(ii). Given that $x \geq 2$, find the general solution of the differential equation

$$
(2 x-3)(x-1) \frac{d y}{d x}=(2 x-1) y
$$

(5 Marks)

