

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DIPLOMA IN ARCHITECTURE AND DIPLOMA IN CIVIL ENGINEERING

STRENGTH OF MATERIAL I

END OF SEMESTER EXAMINATIONS

APRIL/MAY 2010 SERIES

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Scientific calculator

This paper consists of **FIVE** Questions. Answer question **ONE** is COMPULSORY and any other **TWO** Questions. Marks for each part of a question are as shown.

Question ONE (COMPULSORY)

The figure below shows a warren girder consisting of eleven members and freely supported at its end points. The girder is loaded at points C, E, G, D and F using any analytical method. Find all the member forces in the truss indicating whether the forces are in tension or compression. **(30 Marks)**

Question TWO

Figure below shows a beam 6m long which is simply supported at the ends and carries a uniformly distributed load of 1500KN/m, and three concentrated loads of 1000KN, 2000KN and 3000KN respectively. Draw the shear force Bending Moment diagrams and hence determine the value of maximum bending moment. (20 Marks)

Question THREE

The steel section shown below is subjected to shear force of 10,000N. Determine the shear stress at the important points and sketch the shear distribution diagram. (units = metres)

Question FOUR

- (a). Derive from the basic principles the general expression used in the theory of bending. (15 Marks)
- (b). Sketch the typical stress strain graph for mild steel and show the following points:
 - (i). Limit of proportionality
 - (ii). Elastic limit
 - (iii). Yield stress
 - (iv). Ultimate stress
 - (v). Breaking strength.

(5 Marks)

Question FIVE

(a). A Reinforced concrete Column 50 x 50cm in section is reinforced with 4 steel bars of 2.5cm diameter one in each corner. The column is carrying a load of 200Tonnes. Find the stresses in the concrete and steel bars in kg/cm². (10 Marks)

 $= 2.1 \text{ x } 10^{6} \text{kg/cm}^{2}$

 $= 0.14 \text{ x } 10^{6} \text{kg/cm}^{2}$

Take E for steel E for concrete

Steel bars

(b). The figure 5(b) below shows a warren girder loaded at point C and E and freely supported at its ends. Using an appropriate analytical method of analysis, determine force in member DC, EF and BC. (10 Marks)

