Faculty of Engineering \& Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DIPLOMA IN CIVIL ENGINEERING AND CAD

DCC 07 (A \& B)

SEMESTER I EXAMINATIONS

APRIL/MAY 2010 SERIES

SURVEYING

TIME: 3 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Calculator

This paper consists of EIGHT Questions.
Answer any FIVE Questions.
The maximum marks for each part of a question are all shown.

Question ONE

(a). Differentiate between Geodetic and Plane surveying.
(4 Marks)
(b). Define the following terms as used in chain surveying:
(i). Check line
(ii). Offset
(iii). Triangulation
(3 Marks)
(c). With the aid of a sketch, describe the measurement of an angle of slope with all an abney level.
(6 Marks)
(d). With the aid of a sketch, explain the measurement procedure of a line across a wide road.
(7 Marks)

Question TWO

Briefly explain the following chain surveying procedures:
(i). Setting out a right angle from a point to a survey line.
(ii). Setting out a right angle by the 3:4:5 method.
(iii). The repeated alignment techniques.
(20 Marks)

Question THREE

Inorder to control the excavation of the bottom of a sewer trench sight rails are to be positioned at three manhole positions M, N and P such that $\mathrm{MN}=80 \mathrm{~m}, \mathrm{NP}=100 \mathrm{~m}$. A was set up nearby and a reading of 1.28 m obtained on a BM of reduced level 170.96 m . The ground reduced levels of M, N and P being $167.85,168.35$ and 165.91 m respectively.
A sewer is to be laid of falling gradients of $1: 120$ and $1: 125$ between Manholes $\mathrm{M}-\mathrm{N}$ and $\mathrm{N}-\mathrm{P}$ respectively. If the invert reduced level at manhole M is 166.05 m and a 3.75 m traveler is available, calculate:
(a). The invert reduced levels at N and P .
(b). The staff readings necessary at A, B and C to position sight rails at these points.
(c). The depths of dig at M, N and C .
(d). The height of the sight rails above the ground at M, N and P.
(20 Marks)

Question FOUR

The following staff readings were obtained along the bottom of a drain excavation, at 20 m intervals; $2.852,2.580,2.953,3.222,1.592,1.792,2.553,1.953,2.070$, $1.962,1.778,2.525$ and 2.955 all in metres. The underlined figures denote foresights. If the trench is to have a constant falling gradient of 1:100, starting and ending from the first and last point respectively; calculate the amount by which the ground is to be adjusted to attain this uniform gradient. Take the reduced level of the first point as 107.581 m .
(20 Marks)

Question FIVE

Shown in table 1 are the stadia tacheometric observations with the staff held vertically. Given the reduced level of BM as 100.00 m and that the theodolite was first made level when observing to the Bench mark, calculate:
(a). Distance KJ, JL and KL.
(b). Area JKL in hectares.
(c). The reduced levels of points KJ and L.
(d). The difference in height between K and L .
(20 Marks)

Table 1

Inst Stn.	To Stn	Staff Readings	Height of Instrument	Vertical Angles	Whole Circle Bearings
L	B.M	2.809		$0^{\circ} 0^{\prime} 0^{\prime \prime}$	-
L	J	$3.315,2.732,2.150$	1.52	$1^{\circ} 50^{\prime}$	$301^{\circ} 45^{\prime}$
J	K	$2.101,1.906,1.710$	1.46	$2^{\circ} 45^{\prime}$	$185^{\circ} 30^{\prime}$

Question SIX

Fig. 1 shows the information of a closed polygonal fraverse J K L J. Given the whole circle bearing of line JK as $134^{\circ} 25^{\prime} 20^{\prime \prime}$ and the co-ordinates of point J as J. $1500.00 \mathrm{mE}, 1400.00 \mathrm{mN}$, calculate the total co-ordinates of the other stations by the Bowditch's method.

Fig. 1

Question SEVEN

(a). Define the following terms as used in mass-haul diagrams:-
(i). Mass-haul diagram
(ii). Borrow
(iii). Waste
(3 Marks)
(b). State any THREE properties of a mass-haul diagram.
(3 Marks)
(c). Fig. 2 shows a three level road cutting section. Calculate the following for the section using the rate of approach method:-
(i). Side width
(ii). The cross-sectional area
(14 Marks)

Question EIGHT

(a). Derive expressions for the following elements of a circular curve:
(i). Long chord
(ii). Any offset from the long chord.
(8 Marks)
(b). A circular curve 15 m radius is to be set out by offsets from the long chord to connect two intersecting straights deflecting at an angles 82°. Given that offsets are required at 2 m intervals, calculate the setting out data for the curve.
(12 Marks)

