DIPLOMA IN BUILDING AND CIVIL (DBC o8) DIPLOMA IN CIVIL ENGINEERING WITH CAD (DCC o8)

END SEMESTER EXAMINATIONS

CE2C 2204 : THEORY OF STRUCTURE II

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Scientific calculator

This paper consists of FIVE Questions in Sections A and B.
Answer Question ONE in Section A and chooses TWO Questions in Section B. Marks for each section of the question is as shown.

SECTION A

Question ONE (COMPULSORY)

A three hinged parabolic arch shown in Fig. I has a span of 20 m and central rise of 4 m . It is loaded with uniformly distributed load of $20 \mathrm{KN} / \mathrm{m}$ for a length of 8 m from the left end support as shown below. Find:
(I). Vertical reactions at A and B.
(II). Horizontal thrust
(III). Normal thrust at Points A, B, and D.
(IV). Draw the bending moment diagram for the arch and hence find the value of maximum positive bending moment.

Fig. 1
(30 Marks)

SECTION B

Question TWO

A uniformly distributed load of $50 \mathrm{KN} / \mathrm{m}$ of 6 m length crosses a girder of a span 40 m , from left to right. With the help of Influence line, determine the values of shearforce and bending moment at point $\mathrm{X}, 12 \mathrm{~m}$ from the left support when the head of the load is 16 m from the left support of Fig.2.

Fig. 3
(20 Marks)

Question THREE

(a). List THREE classification of arches giving an example for each.
(1½ Marks)
(b). (i). Define the term 'influence line as used in theory of structures.
(2 Marks)
(ii). Using the usual notations and graphical representations, show the Influence lines for:

- Reactions A and B in Fig. 3.
- Shear force at a
- Bending moment at point a,

For a simply supported beam of span l, with a unit loading. $\mathrm{NB} a$ is at the centre of span AB .

Fig. 3
(161/2 Marks)

Question FOUR

Determine the nature and tension coefficient o the members shown in Fig. 4.

(20 Marks)

Question FIVE

(a). State Mohr's $1^{\text {st }}$ and $2^{\text {nd }}$ Theorem on slope and deflection.
(4 Marks)
(b). Derive the expressions for maximum slope and deflection for a simply supported beam carrying a uniformly distributed load over the entire span. Use Mohr's mount-area method.
(10 Marks)
(c). A timber beam 50 mm wide by 100 mm deep is required to support a uniformly distributed load, over a span of 3.0 m . Determine the safe load the beam would carry over its entire span if maximum deflection is limited to Span $/ 300$. Take: $E_{\text {Timber }}=10.5 \mathrm{KN} / \mathrm{mm}^{2}$.
(6 Marks)

