

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

DCC 07

END OF COURSE EXAMINATIONS

APRIL/MAY 2010 SERIES

STRUCTURE

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

Answer booklet Scientific calculator

This paper consists of **FIVE** Questions in **TWO** Sections **A & B**. Answer Question **ONE** in Section **A** and any other **TWO** Questions in Section **B**. Marks for each part of question is as indicated.

© Department of Building and Civil Engineering

SECTION A

Question ONE

- Fig. 1 shows a continuous beam which is encastre at D.
- (a). Using the three moment theorem, analyze the beam and sketch the bending moment diagram, indicating all critical values.
- (b). Determine the values of the reactions.

(30 Marks)

SECTION B

Question TWO

Using the method of moment distribution, analyse the frame shown in fig. 2, and hence sketch the bending moment diagrams indicating all the critical values.

Question THREE

Using the three moment theorem, analyze the beam shown in fig. 3 and sketch the bending moment diagram indicating the values at the critical points.

Questions FOUR

(a) Using the method of moment distribution, analyse the beam shown in fig. 4 and hence sketch the shear force and bending moment diagrams indicating the values at critical points.
(20 Marks)

Fig. 4

Question FIVE

Fig. 5 shows a simple beam supported at point A and B and acted by two moving point loads 1.0m apart.

- (i). Sketch the influence lines diagrams for R_A , R_B , shear force and bending moment at point E on the beam.
- (ii). Determine the maximum shear force and bending moment at point E on the beam. (20 Marks)

