# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering and Technology 

DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

DEPE 2
DTIE E
DEAE 2

## EET 3123

## DIGITAL ELECTRONICS I

SEMESTER II EXAMINATIONS
SERIES: FEBRUARY 2011 SERIES
TIME: 2 HOURS

Instructions to Candidates:

## Question ONE

a) i) State any TWO differences between gray and straight binary codes.
ii) Convert $101100_{2}$ to gray code
iii) Perform the following arithmetic using EX-3 BCD 1000-0010.
b) Three sensors are used to monitor pressure (P), Temperature (T) and voltage (V) of an industrial plant. An alarm should sound for the following conditions;

- If both temperature and voltage sensors are OFF
- If temperature sensor is ON and voltage sensor is OFF
- If pressure sensor is OFF and voltage sensor is ON.

Take a sensor $\mathrm{ON}=\operatorname{logic} 1$ and $\mathrm{OFF}=\operatorname{logic} 0$.
i) Develop a truth table for the problem
ii) Plot these conditions on a Karnaugh map
iii) Determine the minimized expression
iv) Draw the logic circuit that corresponds to the minimized expression.
c) i) Implement using NOR gates only the function $F=(A+B) \bar{C}$
ii) Determine the Boolean expression of fig 1 and reduce it using Boolean algebra.

Fig 1
d) i) Draw the logic circuit and truth table of a J-K flip-flop
ii) State the advantages of J-K over the R-S flip-flop.
e) i) Explain the operation of the circuit of fig 2.

Fig 2
ii) State any TWO advantages and ONE disadvantage of CMOS compared to TTL logic devices.

## Question TWO

a) i) Define the following terms:
I) radix
II) weight
ii) Perform the following conversions
I) $\quad 42.3125_{10}$ to binary
II) $\quad 110101.1010_{2}$ to decimal
III) $473_{8}$ to hexadecimal
IV) $357_{8}$ to decimal
V) 110110101 gray to binary.
b) Perform the following operations
i) $\quad \mathrm{BA}_{16}+\mathrm{A} 5_{16}$
ii) $10001000+01010010$ in BCD
iii) -8-7 using $1 ; s$ complement addition
iv) 15-9 using 2 's complement addition

## Question THREE

a) i) State Demorgan's theorem
ii) Simplify the following expressions using Boolean algebra
I) $\quad F=A \bar{B} C+A B \bar{C}+A B C$
II) $\quad F=(\bar{A}+B)(A+\bar{B}+C)$
iii) From table 1, determine:

| A | B | C | F |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |

b) Minimize the following expressions using Karnaugh maps
i) $\quad F=A \bar{C} D+\bar{A} B \bar{C} D+\bar{A} \bar{B} D+A \bar{B} C D$
ii) $\quad F=A B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{C}$
c) Show that

$$
F=\overline{A . . \overline{B C}}=\bar{A}+B C
$$

## Question FOUR

a) Define the following terms:
i) fan out
ii) noise immunity
iii) propagation delay
b) i) State any TWO advantages and any ONE disadvantage of totem pole output in TTL devices.
ii) Explain why it is not advisable to leave unused inputs of a TTL device floating.
iii) State any TWO ways of overcoming the problem in (b) (ii) above.
iv) Explain the operation of the circuit in fig 3.

Fig 3
c) A unit load (uL) for a logic family is as follows:
$\begin{aligned} 1 u \mathrm{~L} & =40 \mu \mathrm{~A} & & \text { high state and } \\ & =1.5 \mathrm{~mA} & & \text { low state }\end{aligned}$
If high state output current $\mathrm{I}_{\mathrm{OH}}=360 \mu \mathrm{~A}$ and low state output current $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$, determine the fan out.

## Question FIVE

a) Distinguish between the following sequential logic circuits
i) synchronous
ii) asynchronous
b) i) Explain the term race condition and state how it is minimized.
ii) Draw the logic diagram of a T flip flop
iii) With the aid of a logic diagram, explain the operation of NOR gate leading edge triggered R-S flip-flop.
c) i) The waveforms of a fig 4 apply to a trailing edge triggered J-K flip flop. Draw the waveforms for the outputs Q and $\bar{Q}$. Assume that Q is initially at logic 0 .
ii) State any TWO applications of flip flops.

## Fig 4

