

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DEPE 2 DTIE E DEAE 2

EET 3123

DIGITAL ELECTRONICS I

SEMESTER II EXAMINATIONS SERIES: FEBRUARY 2011 SERIES TIME: 2 HOURS

Instructions to Candidates:

Question ONE

- a) i) State any TWO differences between gray and straight binary codes.
 - ii) Convert 101100_2 to gray code
 - iii) Perform the following arithmetic using EX-3 BCD 1000-0010. (6 marks)

b) Three sensors are used to monitor pressure (P), Temperature (T) and voltage (V) of an industrial plant. An alarm should sound for the following conditions;

- If both temperature and voltage sensors are OFF
- If temperature sensor is ON and voltage sensor is OFF
- If pressure sensor is OFF and voltage sensor is ON. Take a sensor ON = logic 1 and OFF = logic 0.
- i) Develop a truth table for the problem
- ii) Plot these conditions on a Karnaugh map
- iii) Determine the minimized expression
- iv) Draw the logic circuit that corresponds to the minimized expression. (6 marks)
- c) i) Implement using NOR gates only the function $F = (A+B)\overline{C}$
 - ii) Determine the Boolean expression of fig 1 and reduce it using Boolean algebra. Fig 1 (7 marks)

d)	i) Draw the logic circuit and truth table of a J-K flip-flop			
	ii)	State the advantages of J-K over the R-S flip-flop.	(4 marks)	
e)	i)	Explain the operation of the circuit of fig 2.		

ii) State any TWO advantages and ONE disadvantage of CMOS compared to TTL logic devices. (7 marks)

Fig 2

Question TWO

- a) i) Define the following terms:
 - I) radix
 - II) weight
 - ii) Perform the following conversions
 - I) 42.3125_{10} to binary
 - II) 110101.1010_2 to decimal
 - III) 473_8 to hexadecimal
 - IV) 357_8 to decimal
 - V) 110110101 gray to binary.
- b) Perform the following operations
 - i) $BA_{16} + A5_{16}$
 - ii) 1000 1000 + 0101 0010 in BCD
 - iii) -8-7 using 1;s complement addition
 - iv) 15-9 using 2's complement addition

Question THREE

- a) i) State Demorgan's theorem
 - ii) Simplify the following expressions using Boolean algebra

I) $F = A\overline{B}C + AB\overline{C} + ABC$

II)
$$F = (\overline{A} + B)(A + \overline{B} + C)$$

iii) From table 1, determine:

А	В	С	F
0	1	0	1
1	0	0	0
1	0	1	1
1	1	0	0

(10marks)

b) Minimize the following expressions using Karnaugh maps

i)
$$F = A\overline{C}D + \overline{A}B\overline{C}D + \overline{A}\overline{B}D + A\overline{B}CD$$

ii)
$$F = AB\overline{C} + \overline{ABC} + A\overline{B}\overline{C} + \overline{A}\overline{C}$$
 (8 marks)

c) Show that

$$F = \overline{A..\overline{BC}} = \overline{A} + BC$$
 (2 marks)

(8 marks)

(12marks)

Question FOUR

- a) Define the following terms:
 - i) fan out
 - ii) noise immunity
 - iii) propagation delay

(3 marks)

- b) i) State any TWO advantages and any ONE disadvantage of totem pole output in TTL devices.
 - ii) Explain why it is not advisable to leave unused inputs of a TTL device floating.
 - iii) State any TWO ways of overcoming the problem in (b) (ii) above.
 - iv) Explain the operation of the circuit in fig 3.

Fig 3

c) A unit load (uL) for a logic family is as follows:

 $1uL = 40\mu A$ high state and

= 1.5mA low state

If high state output current $I_{OH} = 360 \mu A$ and low state output current $I_{OL} = 12 m A$, determine the fan out. (3 marks)

Question FIVE

- a) Distinguish between the following sequential logic circuits
 - i) synchronous
 - ii) asynchronous

(2 marks)

- b) i) Explain the term race condition and state how it is minimized.
 - ii) Draw the logic diagram of a T flip flop
 - iii) With the aid of a logic diagram, explain the operation of NOR gate leading edge triggered R-S flip-flop. (14marks)
- c) i) The waveforms of a fig 4 apply to a trailing edge triggered J-K flip flop. Draw the waveforms for the outputs Q and \overline{Q} . Assume that Q is initially at logic 0.
 - ii) State any TWO applications of flip flops. (4 marks) Fig 4