

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY Electrical Power Engineering

UNIT CODE_____

ELECTRICAL MACHINES III

END OF SEMESTER EXAMINATIONS

SERIES: FEBRUARY 2011 SERIES

TIME: 2 HOURS

Instructions to Candidates:

- 1. You are required to have the following for this examination;
 - Answer booklet
 - Scientific calculator
 - SMP Tables

2. Attempt Question **ONE** (**COMPULSORY**) and any other **TWO** Questions.

3. Q1 carries 30 marks while each of the remaining questions carry 20 marks each

(COMPULSORY)

Question ONE

a)	i)	State TWO main reasons why variable sp			(2 marks)	
	ii)					
		commonly used in variable speed drives.			(3 marks)	
	iii)	Explain the distinguishing features of any	y devices	s in (a) (ii) above.	(6 marks)	
b)	i)	Using a labelled circuit diagram, describe the principle of operation of the circuits.				
		I) Chopper controlled DC machine				
		II) Thyristor converter Drive.			(6 marks)	
	ii)	Draw the typical waveforms at the input	and outp	ut for the drives in (b)) (i) above.	
					(4 marks)	
c)	i) Explain the following terms as applied in stepper motor drives.					
		I) Step angle				
		II) Halt – step				
		III) Full step			(2 marks)	
	ii)	A 500rev/min permanent magnet stepper	as 18 poles on the star	tor and 15 on		
		the rotor. Calculate:				
		I) Step angle				
		II) No of steps made in 1hour.			(3 marks)	
d)	List a	nd distinguish the TWO main types of Ref	rigeration	n systems applied tod	ay. (4 marks)	
Ουος	tion TV	VO				
Ques						
a)	Describe with relevant circuits the following techniques applied in DC motor speed control					
	•	comotive industry.				
	i)	Regenerative braking				
	ii)	Plugging			(4 marks)	
b)	i)	Show that in DC motor speed control				
		I) $T = KIa$ for shunt motor circuit				
		II) $T = Kia^2$ for series motor.			(5 marks)	
	ii) Calculate the power output of a DC shunt motor with the following paramete characteristics.					
		• Number of Armature conductors	=	960		
		• Type of winding	=	wave wound		
		 Number of poles 	=	8		

• Reluctance per pole	=	120Ω	
• Field winding resistance	=	$1m\Omega$	
• Number of Field winding Turns	=	100	
Normal speed of Rotation	=	300 rev/minute	
• Supply voltage	=	210V	
Armature Resistor	=	0.5Ω	(6 marks)

- c) The DC motor in (b) (ii) above was connected to a 240V, 50H supply through a Thyristor converter drive and was found to perform the same with firing angle $\propto = 0^0$. Calculate:
 - i) Percentage change of speed when \propto suddenly adjusted to $\frac{\pi}{3}$ with the field kept constant.
 - ii) Corresponding new torque and new power output. (5 marks)

Question THREE

- a) Draw the circuits for any ONE of the following 3Ø induction motor drives and explain how it works.
 - i) Voltage source inverter circuit
 - ii) Current source inverter circuit
 - iii) Cydo converter circuit. (9 marks)
- b) Sketch the input/output waveform of any ONE circuit in Q 3 (a) above. (4 marks)
- c) A 440V, 3 phase, 6 pole, 50Hz delta connecter induction motor has the following equivalent circuit parameters at normal frequency.

- i) Starting torque and current with normal voltage and frequency.
- ii) Starting torque at 10% of rated frequency and 14% of normal voltage. (7 marks)

Question FOUR

- a) Compare and contrast between any ONE:
 - i) Synchronous and induction motor drives
 - ii) Reluctance and permanent magnet stepper motors. (4 marks)
- b) i) With a construction and wiring diagram, show how the stepper motor can be configured to be driven by:
 - I) Single phase Bipolar pulses
 - II) Three phase Unipolar pulses (5 marks)

c) The block diagram below shows transfer functions of various blocks of vector controlled induction motor drives. The damping factor G = 0.4 and PI controller gain K = 8.

- I) Open loop transfer function
- II) Settling to within 5% of final value
- III) Damped frequency of oscillation

Question FIVE

i)

- a) i) With the aid of a well labelled diagram describe how the vapour compression system in refrigeration and air conditioning works. (5 marks)
 - ii) Draw the refrigeration cycle and indicate where each component in (a) (i) above lies. (3 marks)
- b) Sketch a domestic refrigerator power circuit consisting of the following elements:
 - i) Hermelically sealed sulphase induction motor compression.
 - ii) Thermocouple heat sensor
 - iii) Pressure bellow sensor
 - iv) Fridge Door contact Sensor (5 marks)
- c) i) A certain refrigerant had the following properties when applied in a commercial building refrigeration system.

Q = 20 0.01×10^3 Cp = $-15^{\circ}C$ Ti = $10^{0}C$ То = Pumping power 2 kW. = Calculate:

- I) Tonnes of refrigeration
- II) Specific power consumption carnot. (5 marks)
- iii) Calculate the coefficient of performance for the refrigeration in C (i) if the mean evaporator temperature was -13° C and that of compression was 25° C. (2 marks)

(9 marks)