THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY

Electronics Engineering
Electrical Power Engineering Electronics \& Automation Engineering Telecommunication and Information Engineering

Computer Science Engineering Instrumentation and Control Engineering

EEE 32106 : DIGITAL ELECTRONICS I

SEMESTER I EXAMINATIONS

SERIES: SEPTEMBER/OCTOBER 2010
TIME: 2 HOURS

Instructions to Candidates:

1. You are required to have the following for this examination;

- Answer booklet
- A non-programmable scientific calculator

2. Answer Question ONE (COMPULSORY) and any other TWO Questions.

(COMPULSORY)

Question ONE

(a) Perform the following arithmetic operations:
(i) $1101110_{2}+10111_{2}$
(ii) $11101_{2} \times 1101_{2}$

A51 $1_{16}+236_{8}$ (leave the answer in Hexadecimal)
(7 Marks)
(b) (i) State Demogans theorem's.
(ii) Prove using Boolean algebra that:

$$
\overline{\bar{A}+\bar{B}+A B C}+\overline{A \bar{B} C}=1
$$

(iii) Simplify and implement using NAND gates only the function:

$$
A B+B \bar{C} D
$$

(iv) A control circuit is used in an illumination plant to control three lights. It operates when atleast any TWO of the THREE lights are ON.
(I) Draw the truth table for the conditions.
(II) Derive the sum of products expression.
(12 Marks)
(c) (i) Show any ONE method of interfacing CMOS to TTL gates.
(ii) State any TWO advantages and ONE disadvantage of CMOS over TTL.
(5 Marks)
(d) With the aid of a truth table explain the operation of the circuit in fig. 1. (6 Marks)

Question TWO

(a) (i) Explain the following terms:
(I) Maxterms
(II) Minterms
(4 Marks)
(ii) Simplify the following using Boolean algebra.

$$
\begin{align*}
F & =X \bar{Y} Z+x y \bar{Z}+x Y Z \tag{I}\\
\boldsymbol{P} & =\overline{(\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}})(\overline{(\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}} \cdot \boldsymbol{C})}}
\end{align*}
$$

(6 Marks)
(b) An Engine has FOUR (4) fail Sensors. The engine should keep running unless any of the following conditions arise:

- If sensor 2 is activated.
- If sensor 1 and 3 are activated at the same time.
- If sensor 2 and 3 are activated at the same time.
- If sensor 1, 3, 4 and activated at the same time.
(Take engine activated $=1$ engine Shut Down $=0$)
(i) Obtain the truth table for this system.
(ii) Derive the sum of products (max terms) expression.
(iii) Implement the simplified function of system.
(c) Draw the circuit for the function:

$$
F=B+\bar{A} C D+\bar{B} \bar{D} \quad \text { using NAND gates only. }
$$

Fig. 1

Question THREE

(a) With the aid of sketches explain the following terms as applied in logic families:
(i) Fan out
(ii) Propagation delay
(b) (i) Draw a logic circuit diagram of a Tri-state TTL Nand gate and explain its operation.
(ii) State ONE advantage and ONE disadvantage of ECL over TTL. (2 Marks)
(c) (i) Explain the operation of the circuit in fig. 2.
(ii) Describe the methods used to overcome the problem of floating unused inputs.

Fig. 2

Question FOUR

(a) (i) With the aid of a logic diagram \& truth table explain the operation of a \mathbf{J} - K flip flop mentioning hw it differs from the $\mathrm{S}-\mathrm{R}$ flip flop.
(ii) Discuss why the master-slave configuration is preferred to a standard \mathbf{J} - K flip flop.
(9 Marks)
(b) Use an appropriate sketch to distinguish between the set up time and hold time as applied in flip flop.
(c) (i) Show how S - R flip flop can be configured to form a D flip flop (latch).
(ii) Draw the:
(I) Truth table for the Flip flops in (i)
(II) Outputs the $Q N \bar{Q}$ in fig. 2.

Q
\bar{Q}

Fig. 2

Question FIVE

(a) Convert
(i) 10011010.110_{2} to decimal
(ii) 365_{8} to binary
(iii) 239_{10} to Hexadecimal
(iv) 110011_{2} to Gray
(6 Marks)
(b) Perform the following arithmetic operations:
(i) $A 21_{16}+13 B_{16}$
(ii) $135+228$ in BCD
(iii) $364+143$ in ex -3
(iv) 110011-10011, using 2^{S} compliment.
(8 Marks)
(c) State any TWO advantages and ONE disadvantage of:
(I) Gray code over straight binary
(II) BCD codes over straight binary
(6 Marks)

