

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY

Mathematics and Robotics Engineering (DMRE 4)

UNIT CODE:_____

VIBRATIONS, STRENGTH OF MATERIALS AND MACHINE DESIGN

SEMESTER III EXAMINATIONS

SERIES: FEBRUARY 2011 SERIES

TIME: 2 HOURS

Instructions to Candidates:

- 1. You are required to have the following for this examination;
 - Answer booklet
 - A non-programmable calculator
- 2. Answer Question **ONE** (**COMPULSORY**) and any other **TWO** Questions.
- 3. Take the value of acceleration due to gravity (g) to be 8.81 m/s^2 .
- 4. Question ONE carries 30 marks, Questions TWO, THREE, FOUR and FIVE carry 20 marks each.

(COMPULSORY)

Question ONE

a)	i)	Define the following terms:		
		I) Simple H	Iarmonic Motion	
		II) Vibration	15	
		III) Frequence	<i>y</i> y	
		IV) Oscillatio	on	
		V) Amplitud	le	(5 marks)
	ii)	 A body is moving with S.H.M. at a frequency of 2 Hz and an amplitude of 200mm. Calculate the displacement of the body after 2 seconds from the mid-position. (5 marks) 		
b)	State	ate and explain the TWO types of vibrations. (4 marks)		
c)	i)	i) Show that the frequency in vertical motion is given by:		
		$\eta = \frac{1}{2\pi} \sqrt{\frac{g}{d}}$		
		Where η = Frequency		
		g = Gravitational force		
		d = Station	c deflection.	(6 marks)
d)	State	and explain the TH	IREE types of vibration damping.	(6 marks)

(ANSWER ANY OTHER TWO QUESTIONS)

Question TWO

a) i) The beam shown below has a bending stress of 80MN/m². What is the value of the load W. (8 marks)

ii) State the FIVE main parameters that affect the amount of deflection of a beam.

(5marks)

(7 marks)

- b) A robotic arm is carrying a 500g load and is rotating at 15 yards/s with a periodic time of 1.2 seconds. Calculate.
 - i) The length of the arm.
 - ii) The tension the arm is experiencing.

Question THREE

- a) The triangular section solid shaft in Fig Q. 3 (a) can withstand a maximum shear stress of 20KN/m² with a deflection of 0.80mm. If the value of E for the shaft is 60KN/m², calculate its maximum length (L). (19marks)
- b) i) State any FOUR factors that determine the choice of a damping system for a vibrating body.
 - ii) A 2 tonne vehicle is fitted with a suspension system of a co-efficient of 0.87. Determine:
 - I) The damping co-efficient of the system if the springs used have a stiffness of 470N/m.
 - II) The type of vibration damping. (7 marks)

Question FOUR

a) The figure below shows a beam undergoing combined loading.

Calculate:

- i) The reaction forces L and R.
- ii) If the beam is of circular cross-section with a radius of 0.4m, calculate the radius of circular of the beam portion A B at point B. Given $E = 50 \text{KN/m}^2$. (10marks)
- b) A shaft of 5m long and 200mm diameter is rotated by a 10KW power rated motor at 40 rpm. Calculate:
 - i) The shear stress experienced by the shaft.
 - ii) The angle of twist in degrees, given $G = 84GN/m^2$.
 - iii) If the shaft weighs 0.5 tonnes, calculate its frequency and periodic time of the vibrations due to its rotation. (10marks)

Question FIVE

- A 2m long square section beam of 75mm by 75mm is subjected to a bending moment of 2.5KN/m due to a circular motion at 20 rad/s.
 Calculate:
 - i) The maximum stress the beam experiences.
 - ii) The amount of power the beam develops. (10marks)
- b) The beam elongates to a total length of 10.54m after deflection. If the beam is of a square section with a width and breadth of 0.7m, calculate the total deflection of the shaft.

(10marks)