

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY

Electrical Power Engineering

EEC 2205 MACHINES UTILIZATION I

SEMESTER EXAMINATION

SERIES: FEBRUARY 2011 SERIES

TIME: 2 HOURS

Instructions to Candidates:

- 1. You are required to have the following for this examination;
 - Answer booklet
 - A non-programmable calculator
- 2. Answer Question **ONE** (**COMPULSORY**) and any other **TWO** Questions.

(COMPULSORY)

Question ONE

- a) i) Explain any THREE significance of back emf in d.c motors. (3 marks)
 - ii) A 440V shunt motor has an armature resistance of 0.8Ω and a field resistance of 200 Ω . Determine the back emf when the motor is giving an output of 7.46 kw at 85% efficiency. (4 marks)
 - iii) State any THREE applications of d.c. shunt motors. (3 marks)
- b) i) State any TWO application of the following single phase machine.
 - I) Hysteresis motors
 - II) Universal motor (4 marks)
 - ii) With the aid of a circuit diagram, explain the operation of a capacitor start capacitor run single phase induction motor. (6 marks)
- c) i) State any TWO types of rotors used in induction motor. (2 marks)
 - ii) A 3-phase induction motor is wound for a pole and is supplied from 50Hz system. Calculate:
 - I) The syndronous speed
 - II) The rotor speed when the slip is 4%
 - III) Rotor frequency when the rotor is at 600vpm. (3 marks)
 - iii) Using a well labelled diagram explain the autotransformer method of starting induction motors. (5 marks)

(ANSWER ANY OTHER TWO QUESTIONS)

Question TWO

- a) i) State any THREE tests carried in d.c. machines. (3 marks)
 - ii) Show that the armature torgue developed in a series d.c motor is given by: $T_a \ \alpha \ T_a^2 \ \ (7 \ marks)$
- b) i) State any TWO applications of the following d.c. motor
 - I) Compound motors
 - II) Series Motors (4 marks)
 - ii) A 25kw 250v d.c. slunt generator has an armature field resistance of 0.06Ω and 100Ω respectively. Determine the total armature power developed when working as:
 - I) Generator delivering 25kw
 - II) Motor taking 25kw (6 marks)

Question THREE

- a) i) Define the term slip as used in induction. (2 marks)
 - ii) Give TWO significance of having skewed slots on squirrel-cage rotor. (2 marks)
 - iii) The input to a 3 phase 4-pole 50Hz induction motor is 150kw, stator losses are 5kw mechanical losses are 3kw and full load slip 0.05. Find
 - I) Frequency of the rotor emf at standstill
 - II) Frequency of the rotor emf at full load
 - III) Rotor copper loss
 - IV) Efficiency of the motor

(6 marks)

- b) A 415V three-phase 50Hz four pole star connected induction motor operates at 1425rev/min on full load. The rotor resistance and reactance per phase are 0.4Ω and 4Ω respectively and the effective rotor-stator terms ratio is 0.8:1. Calculate:
 - i) The full load torque
 - ii) The power output if the mechanical losses amount to 480W.
 - iii) The maximum torgue
 - iv) The speed at which maxim torque occurs
 - v) The torque at start.

(10marks)

Question FOUR

- a) i) State any TWO types of repulsian-type single phase motors. (6 marks)
 - ii) With the aid of circuit diagrams differentiate between a resistor-start and an inductor-start single phase motors. (6 marks)
- b) i) With the aid of a well labelled diagram, explain the Hopkinson's test for d.c. motors. (4 marks)
 - ii) A 250V d.c. shunt machine has an armature resistance including inter-pole of 0.5 and shunt field resistance of 125Ω both values at working temperatures. When it is running light as a motor, the current taken from the supply is 5A. Calculate the efficiency of the machine.
 - I) When taking a current of 52A from the supply as a motor
 - II) When delivering a current of 35A as a generator. (8 marks)

Question FIVE

- a) Draw a well labelled exact equivalent circuit diagram of a 3 phase induction motor.(2marks)
- b) For a 3-phase induction motor; show that the maximum torque is reached when $S = \frac{R_2}{X_2} \tag{8 marks}$
- c) A 440V, 3ϕ ,50Hz 8 pole star connected induction motor has the following equivalent circuit parameters per phase. $R_1 = R_2^1 = 0.1\Omega$, $X_{1=X_2}^1 = 0.7\Omega$ Rm = 100Ω Xm = 25Ω . Calculate the rotor current referred to the stator current. The input power factor, the torque and the efficiency of the motor at 40% slip and the starting torque. (10marks)