

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY

EEC 2203

CONTROL SYSTEMS I

END OF SEMESTER EXAMINATION SERIES: FEBRUARY 2011 SERIES TIME: 2 HOURS

Instructions to Candidates:

- 1. You are required to have the following for this examination;
 - Answer booklet
 - A non-programmable calculator
 - La Place transform tables
- 2. Answer Question **ONE** (**COMPULSORY**) and any other **TWO** Questions.
- 3. Maximum marks for each question are shown.

(COMPULSORY)

Question ONE

a) i) With the aid of a canonical form block diagram of a closed loop system derive closed loop transfer function

$$\frac{C_{(S)}}{R_{(S)}} = \frac{G_{(S)}}{1 + G_{(S)}H_{(S)}}$$

- ii) Define the following control terms
 - I) System
 - II) Controlled variable
 - III) Reference variable
 - IV) Plant
 - V) Error signal
- iii) State FOUR features that feedback effects to a system. (15marks)
- b) Reduce the block diagram in figure 1 to open loop form hence find the relationship

$$\frac{R_{(S)}}{C_{(S)}}$$
(5 marks)

Fig 1

Fig 2

c) Reduce the signal flow graph in fig 2 to get the ratio of output to input.

$\frac{X_s}{x}$	(6 marks)
24	

Fig 3

(ANSWER ANY OTHER TWO QUESTIONS)

Question TWO

a) Construct the signal flow graph of the following simultaneous equations making y_4 as the output node hence determine the transfer function using Masous gain formula. (15marks)

 $y_{2} = t_{21} y_{1} + t_{23} y_{3}$ $y_{3} = t_{31} y_{1} + t_{32} y_{2} + t_{33} y_{3}$ $y_{4} = t_{42} y_{2} + t_{43} y_{3}$

b) Define the following terms as used in signal flow graphs

(5 marks)

- i) Feedback loop
- ii) Self loop
- iii) Input node
- iv) Output node
- v) Path

Question THREE

- a) Define with the aid of sketches the following input signals used for testing control systems. Give their mathematical representation.
 - i) Step
 - ii) Impulse
 - iii) Ramp
 - iv) Parabolic
- b) For the system shown in fig 4 below, find 'a' such that the damping ratio is 0.5. Determine the:
 - i) Rise time
 - ii) Peak time
 - iii) Maximum overshoot
 - iv) Settling time

In the unit step response input.

(10marks)

Question FOUR

a)	Simplify the block diagram in fig 5 below hence determine the outputs $G_{(S)}$			
	Fig 5			

b) Simplify the block diagram in figure 6 below and obtain closed loop transfer function.

$C_{(S)}$	(4 marks)
$R_{(S)}$	(Thanks)

Fig 6

Question FIVE

a) For the spring mass damper system shown in fig 7 below shows that when subjected to a forcing function $F_{(t)}$, it shifts from rest position X_0 to final displacement X_1 by the value: $F_{(t)} = mx_1 + Cx_1 + kx_1$ (6 marks)

Fig 7

Where

X_0	=	initial position
\mathbf{X}_1	=	position after displacement
Μ	=	mass
Κ	=	spring
С	=	damper

b) For a system described by

$$\frac{d^2 y}{dt^2} + 5\frac{dy}{dt} + 6y = 6$$

With initial conditions $y^{1}(0) = 2;$ y(0) = 2. Obtain y(t). Using La place transforms obtain value of y(t) (8 marks)

c) For the circuit shown in fig 8 below, determine the relationship. (6 marks) $\frac{E_{O(S)}}{E_{i(S)}}$ Fig 8