THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

CEPE 2

EEA 1102

ENGINEERING MATHS II

SEMESTER EXAMINATION

SERIES: FEBRUARY 2011 SERIES
TIME: 2 HOURS

Instructions to Candidates:

1. You are required to have the following for this examination;

- Answer booklet
- A calculator
- Mathematical table
- Graph paper
- Geometrical set
- Ruler

2. Answer Question ONE (COMPULSORY) and any other TWO Questions. Maximum marks are shown against respective Questions.

(COMPULSORY)

Question ONE

i) Convert:
a) $\quad 119^{0}$ to radians
b) $\quad 73.33^{\prime}$ to radians
c) 2681 radians to degrees
d) $\frac{3 \pi}{7}$ radians to degrees.
ii) a) Find the length of arc of a circle of radians 4.23 cm when the angle subtended at the centre is 1.46 radians.
b) Show that the triangle with sides $9 \mathrm{~m}, 40 \mathrm{~m}$, and 41 m is a right angled triangle.
c) Given $\sec \Theta=1.4723$, where Θ is an acute angle, determine $\operatorname{cosec} \Theta$ and $\cos \Theta$.
d) Prove the following trigonometric identities:
I) $\sin \theta \cos \theta=\frac{\sin ^{2} \theta}{\tan \theta}$
II) $\sin \theta \sec \theta=. \tan \theta$
iii) a) The velocity of a body was measured at various times and the results obtained were:

Velocity $\left(\mathrm{ms}^{-1}\right)$	V	7.7	10.5	13.3	15.5	16.3	20.5	23
Time (S)	t	1	2	3	4	5	6	7

If the law connecting velocity and time is of the for $\mathrm{V}=\mu$ tat where μ and a are constants; Graphically verify the law and determine approximate values for μ and a .
b) The volume of a sphere radius ' r ' is to be twice that of a cone having the same base radius. Find an equation relating the cone height ' h ' to the base radius ' r '.
iv) a) Express the following in partial fractions
I) $\frac{8 x-28}{x^{2}-6 x+8}$
II) $\frac{x^{2}+3 x-10}{x^{2}-2 x-3}$
b) The masses of 50 castings gave the following frequency distribution:

Mass x (kg)	$10-12$	$13-15$	$16-18$	$19-21$	$22-24$	$25-27$	$28-30$
Frequency (f)	3	7	16	10	8	5	1

`Using central values as the midpoints of the bases of the rectangles, draw the histogram to represent the data.

(ANSWER ANY OTHER TWO QUESTIONS)

Question TWO

a) Given the equation $x^{2}+y^{3}=y$
i) Transpose the equation to make T the subject of the transposed equation.
ii) Construct ordered pairs (co-ordinates) of numbers corresponding to the integer values of x where $-5 \leq x \leq 5$.
iii) Plot the ordered pairs of numbers on a cartesion graph and join the points plotted with a continuous curve.
iv) Plot the graph of $y=4 x^{3}-4 x^{2}-15 x+8$ for values of x between $x=-3$ and $x=3$. Hence determine the roots of the equation $4 x^{3}-4 x^{2}-15 x+18=0$.
b) Verify each of the following identities:
i) $1-\frac{\sin \theta \tan \theta}{1 \alpha \sec \theta}=\cos \theta$
ii) $\sin \theta+\sin \phi=23 m \frac{\theta+\phi}{2} \cos \frac{\theta-\phi}{2}$
iii) I) Convert the angle 52.505° to degrees, minutes and seconds.
II) Show that $\quad \tan 15=\frac{\sqrt{3}-1}{\sqrt{3}+1}$

Question THREE

a) Express the following in partial fractions.
i) $\frac{x+7}{x^{2}-7 x+10}$
ii) $\frac{2 x^{2}+6 x-35}{x^{2}-x 12}$
iii) $\frac{7 x^{2}-18-7}{(x-4)\left(2 x^{2}-6 x+3\right)}$
iv) $\frac{35 x-14}{(7 x 2)^{2}}$
b) Expressing the trigonometric ratios in their fraction form e.g. $\sin 60^{\circ}=\frac{\sqrt{3}}{2}=\cos 30$ etc and indicating quadiant of which they lie, show that the relationships:
i) $\cos ^{2} \theta^{1}+\sin ^{2} \theta=1$
ii) $1+\tan ^{2} \theta=\sec ^{2} \theta$
iii) $\cot ^{2} \theta+1=\operatorname{cosec} 2 \theta$
are valid in the following values of Θ (1) $120^{\circ} \quad$ (2) $210^{\circ} \quad$ (3) 315°
Note: Working must show the use of the trigonometric identities as asked.

Question FOUR

a) i) Define Simpson's rule as a method used to find area of an irregular plane surface.
ii) An indicator diagram of a steam engine is 9.00 cm long. Seven evenly spaced ordinates including the end ordinates are measured with the following results: 5.10, $4.60,3.20,2.70,2.32,2.18,2.06 \mathrm{~cm}$. Find the area of the diagram and the mean pressure in the cylinder, if the pressure scale is $100 \mathrm{KNM}^{2}$ to 1 cm and given that: mean pressure $=\frac{\text { area of diagram }}{\text { base }}$
b) Using diagrams, find:
i) The volume of a sphere of radius ' r '
ii) The volume of a cone of radius ' r ' and height ' h ' by using the prismodal rule.
(10marks)

Question FIVE

a) Solve triangle JKL , given $\angle \mathrm{J}=123^{\circ} 17^{\prime}, \mathrm{JK}=72 \mathrm{~mm}$ and $\mathrm{JL}=43 \mathrm{~mm}$.

A quadrilateral plot of ground ABDC has the dimensions $\mathrm{AB}=60 \mathrm{~m}, \mathrm{BD}=130 \mathrm{~m} \mathrm{DC}=$ 145 m and $\mathrm{CA}=124 \mathrm{~m}$. The angle $\mathrm{BAC}=64^{\circ}$. Determine BC and the angle BDC.
b) Find the volume and the total surface area of a frustum of a cone if the diameters of the ends are 5.0 cm and 3.0 cm and the perpendicular height is 3.20 cm .

