THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering and Technology

CEPE 2

UNIT CODE: \qquad

DIGITAL ELECTRONICS I

SEMESTER EXAMINATION
SERIES: FEBRUARY 2011 SERIES
TIME: 2 HOURS

Instructions to Candidates:
Answer Question ONE (COMPULSORY) and any other TWO Questions.

(COMPULSORY)

Question ONE

a) i) Define the following terms:
I) radix
II) weight
ii) Perform the following conversions:
I) $\quad 0.5625_{10}$ to binary
II) $\quad 101101.0110_{2}$ to decimal
III) $\quad 111110100010_{2}$ to hexadecimal
IV) 243_{10} to octal
V) $4 \mathrm{~F}_{16}$ to binary then to octal.
b) Perform the following arithmetic operations
i) $\quad \mathrm{DB}+\mathrm{F} 5$
ii) $\quad 15_{8}+44_{8}$
iii) $11011 \div 11$
iv) $\quad 110 \times 1001$
c) Perform the following operations
i) 100000-101111 using 1 s complement
ii) $16_{10}-14_{10}$ using 2 s complement
iii) $\quad-6+5$ using 1 s complement

Question TWO

a) i) Distinguish between weighted and unweighted code and give an example of each.
ii) State any TWO differences between gray and straight binary.
iii) State any TWO advantages and any ONE disadvantage of binary coded decimal.
(7 marks)
b) i) Use the ASCII table attached to decode the following sequence $0110111 \quad 1000011 \quad 1000001 \quad 1010100 \quad 1010011 \quad 0111111$
ii) Encode the following using ASCII table
I) @
II) \&
c) Perform the following code arithmetic
i) $88+52$ in BCD
ii) $8-2$ in excess 3 BCD

Question THREE

a) i) State Demorgan's theorem
ii) Prove by truth table that $\mathbf{1 + A}=\mathbf{1}$
b) i) Simplify the following expressions using Boolean Algebra
I) $\quad F=\bar{A} \bar{C}+A B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}$
II) $\quad F=(A+B)(A+\bar{B}+C)$
ii) Implement the logic circuit to produce the following output
$F=\bar{B} \bar{C}+\bar{A} \bar{B}+A \bar{C}$
iii) Determine the function F in fig 1

Fig 1

c) i) Implement the following logic function using NOR gates only

$$
F=(A+\bar{B}) \bar{C}
$$

ii) Prove that $\overline{\overline{A+B}+C}=(A+B) \bar{C}$

Question FOUR

a) i) From table 1, determine the
I) min-term expression
II) max-term expression

Table 1

A	B	C	X
0	1	0	0
1	0	0	1
1	0	1	0
1	1	1	0

table 2

	$\bar{C} \bar{C} \bar{c} \bar{C} D$		$C D$	
$C \bar{D}$				
$\bar{A} \bar{B}$	0	0	0	0
$\bar{A} B$	1	0	1	1
$A B$	1	0	0	1
A	0	0	0	0

ii) From the K-map of table 2, determine:
I) The complete Boolean expression
II) The minimized expression
b) Minimize the following Boolean expressions using Karnaugh maps
i) $\quad F=\bar{A} \bar{C}+A B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} C$
ii) $\quad F=\bar{A} C+A \bar{C}+A C$

Question FIVE

a) Three sensors are used to monitor pressure (P), Temperature (T) and voltage (V) of an industrial plant. An alarm should sound for the following conditions:

- If both temperature and voltage sensors are OFF
- If temperature sensors is ON and voltage sensor is OFF
- If pressure sensor is OFF and voltage sensor is ON.

Take sensor $\mathrm{ON}=\operatorname{logic} 1 \quad$ and $\quad \mathrm{OFF}=\operatorname{logic} 0$
i) Develop a truth table for the problem
ii) Derive the Boolean expression for the sum of products.
b) i) Find the canonical form of

$$
F=A \bar{B}+\bar{C}
$$

ii) Write the expression in the form $\Sigma(a, b, c)$
c) Design a 3 bit odd parity generator.

