

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

CEPE 2

UNIT CODE: _____

DIGITAL ELECTRONICS I

SEMESTER EXAMINATION SERIES: FEBRUARY 2011 SERIES TIME: 2 HOURS

Instructions to Candidates:

Answer Question ONE (COMPULSORY) and any other TWO Questions.

(COMPULSORY)

Question ONE

a)	i)	Define the following terms:					
		I)	radix				
		II)	weight				
	ii)	Perfor	erform the following conversions:				
		I)	0.5625 ₁₀ to binary				
		II)	101101.0110_2 to decimal				
		III)	111110100010_2 to hexadecimal				
		IV)	243 ₁₀ to octal				
		V)	$4F_{16}$ to binary then to octal.	(13marks)			
b)	Perform the following arithmetic operations						
	i)	DB + F5					
	ii)	$15_8 + 44_8$					
	iii)	$11011 \div 11$					
	iv)	110 x	1001	(8 marks)			
c)	Perform the following operations						
	i)	100000- 101111 using 1s complement					
	ii)	$16_{10} - 14_{10}$ using 2s complement					
	iii)	-6+5	using 1s complement	(9 marks)			

Question TWO

a)	i) ii) iii)	Distinguish between weighted and unweighted code and give an example of each. State any TWO differences between gray and straight binary. State any TWO advantages and any ONE disadvantage of binary coded decimal.							
			-	-		-	-	(7 marks)	
b) i) Use the ASCII table attached to decode the following sequence					uence				
		01101	11	1000011	1000001	1010100	1010011	0111111	
	ii)	Encode the following using ASCII table							
		I)	@		II)	&			
c)	Perform the following code arithmetic								
	i)	88 + 52 in BCD							
	ii)	8 – 2 i	n exces	ss 3 BCD				(6 marks)	

Question THREE

a)	i)	State Demorgan's theorem					
	ii)	Prove by truth table that $1 + A = 1$ (4 m	narks)				
b)	i)	Simplify the following expressions using Boolean Algebra					
		I) $F = \overline{\overline{A}C} + AB\overline{C} + \overline{A}BC + A\overline{B}\overline{C}$					
		II) $F = (A+B)(A+\overline{B}+C)$					
	ii)	Implement the logic circuit to produce the following output					
		$F = \overline{B} \overline{C} + \overline{A} \overline{B} + A \overline{C}$					
	iii)	Determine the function F in fig 1					

Fig 1

c)	i)	Implement the following logic function using NOR gates only			
		$F = (A + \overline{B})\overline{C}$			

ii) Prove that
$$\overline{A+B}+C = (A+B)\overline{C}$$
 (5 marks)

Question FOUR

a) i) From table 1, determine the

I) min-term expression

II) max-term expression

Table 1

А	В	С	Х
0	1	0	0
1	0	0	1
1	0	1	0
1	1	1	0

- ii) From the K-map of table 2, determine:
 - The complete Boolean expression I)
 - II) The minimized expression (10marks)
- Minimize the following Boolean expressions using Karnaugh maps b)

i)
$$F = \overline{A}\overline{C} + AB\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{B}C$$

 $F = \overline{A}C + A\overline{C} + AC$ ii) (10marks)

Question FIVE

- a) Three sensors are used to monitor pressure (P), Temperature (T) and voltage (V) of an industrial plant. An alarm should sound for the following conditions:
 - If both temperature and voltage sensors are OFF •
 - If temperature sensors is ON and voltage sensor is OFF •
 - If pressure sensor is OFF and voltage sensor is ON. Take sensor ON = logic 1and OFF = logic 0
 - Develop a truth table for the problem i)
 - ii) Derive the Boolean expression for the sum of products. (6 marks)
- Find the canonical form of b) i) $F = A\overline{B} + \overline{C}$ ii) Write the expression in the form $\Sigma(a, b, c)$ (6 marks) (8 marks)
- c) Design a 3 bit odd parity generator.