

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

(HD A08)

MATHEMATICS

FINAL EXAMINATION

SERIES: APRIL/MAY 2010

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
 - Mathematical table /scientific calculate

Answer any **FIVE** of the following **EIGHT** questions. All questions carry equal marks.

Question ONE

a) Given that $Z = (At^n + Bt^{-n})Sin(n\theta + \omega$ where *A*, *B*, *n*, and ω are constants show that

$$\frac{\partial^2 Z}{\partial t^2} + \frac{1}{t} \frac{\partial Z}{\partial t} + \frac{1}{t^2} \frac{\partial^2 Z}{\partial \theta^2} = 0$$
 (8marks)

b) Show that $f(x, y) = x^2 y^2 (1 - x - y)$ has a maximum at $x = y = \frac{2}{5}$. (12marks)

Question TWO

a) Solve for a in the equation:

$$\begin{vmatrix} a & 4 & 2 \\ a^2 & 4 & 4 \\ a^3 & 4 & 8 \end{vmatrix} = 3$$
(8marks)
b) Given the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 1 \end{bmatrix}$
i) Evaluate $P = A^2 + 3A$
ii) Find P-1 and hence solve the simultaneous equation
 $15x + 23y + 9z = 3$
 $9x + 15y + 7z = -5$

$$14x + 18y + 8z = 0$$
 (12marks)

Question THREE

a)	i.	State the necessary and sufficient condition for an equation
		Mdx + Ndy = 0 to be exact

ii. Show that the differential equation (2x+3Cosy)dx+(2y-3xSiny)dy = 0 is exact and hence solve

the differential equation given that when x = 0, $y = \frac{\pi}{2}$

b) Solve the differential equation completely $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = x^2 + e^{2x}$ given that $x = 0, y = -1, \dot{y} = 0$ (13marks)

Question FOUR

a) In an experiment, the length of 100 white mice are measured to the nearest 0.1cm and the frequency tabulated as follows:

	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64
Length									
	1	4	15	20	25	26	7	1	1
Freq.									

Find:-

- i) The modal and the media class.
- ii) Upper quartiles and lower quartile hence interquartile range.
- iii) Mean
- iv) Median
- v) Mode
- vi) Standard deviation and skewness
- vii) Coefficient of variation
- b. A machine manufacturing screws is known to produce 5% defective to a random sample of 15 screws. What is the probability that there are:
 - i) Exactly three defective
 - ii) Not more than three defective. (5marks)

Question FIVE

a) Determine the modules and the argument of

$$Z = \frac{1}{12 + 5j} \tag{3marks}$$

b) Solve the equation $Z^3 = \frac{4-2j}{j}$ and express yours roots in the form a + jb.

c) Given Z = 2-j is a root to the polynomial $3Z^3 = 14Z^2 + 23Z + \lambda = 0$ Determine:

- i) The value of λ
- ii) The other two roots (4marks)
- d) Use De-Moirres theorem to prove that

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$
(3marks)

(15marks)

(10marks)

Question SIX

Given that $f(x) = \begin{cases} \frac{c^2}{2}e^{-cx} \\ 0_1 \end{cases}$ $x \ge 0$ elsewhere is a probability density

function, determine:

- i) The value of c.
- ii) The expected value of x
- iii) The standard deviation σ
- iv) The probability that $0 \le x \le 3$ correct to 4 d.p.

(20marks)

Question SEVEN

- a) i. Derive Newton-Raphson iterative formulae.
 - ii. Use the Newton Raphson Formulae to determine the cube-root of 123 correct to fire decimal places. (9marks)
- b) Table 1 shows measurements taken by a surveyor where one value was wrongly recorded.

х	1	1.1	1.2	1.3	1.4	1.5	1.6
f(xz)	5	5.64	6.36	7.16	8.4	9.	10.04
1(X)							

- i) Use finite difference to correct the wrongly recorded value
- ii) Determine the function f(x) by use of Newton Gregory interpolation formula (11marks)
- iii) Find f(1.48)

Question EIGHT

a) Evaluate the following interval:

$$\int \frac{d\theta}{5 + 4\cos\theta} \tag{5marks}$$

b) State the Cauchy linear equation, hence solve the equation

$$x^{2} \frac{d^{2} y}{dx^{2}} + 5x \frac{dy}{dx} + 3y = (1 + \frac{1}{x}) Inx \text{ using the substitution } x = e^{z}.$$
 (15marks)