THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING
(HD A08)

MATHEMATICS (O.D.E)

SEMESTER III EXAMINATION
SERIES: APRIL/MAY 2010
TIME : 2 HOURS

Instructions to candidates:

You must have the following for this examination:

- Answer booklet
- Scientific Calculator / S.M. P table

This paper consists of FIVE questions
Answer question ONE from section \mathbf{A} and any other TWO questions from section \mathbf{B}. Attached find the abridged Laplace Transform table.

Question One

a) Solve completely for q2 leaving your answer with arbitrary constants.

$$
\begin{align*}
& \frac{d q^{1}}{d t}+q_{1}+q_{2}=4 \operatorname{Cos} 4 t \\
& \frac{d q_{2}}{d t}+q_{2}=q_{1} \tag{10marks}
\end{align*}
$$

b) Determine the laplace transfer of : $f(t)=\boldsymbol{e} \lambda^{2} t$ from first principles.
c) Determine the laplace transform of :

$$
\frac{e^{8 t}-1}{t}
$$

d) Solve the following differential equation using D- operator method or method of undetermined coefficient.

$$
\frac{d^{2} x}{d t^{2}}+400 x=10 \operatorname{Cos} 20 t \text { given that } t=0, x=0, \dot{x}=100 .
$$

Question TWO

a) Determine the inverse la place transform of :
i) $\frac{7 s^{2}-6 s-64}{(s-2)(s+4)(s-4)}$
ii) $\frac{26-s^{2}}{s\left(s^{2}+4 s+13\right)}$
b) Solve the following by la place transform method.

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-4 x=\text { Cosst } \quad \text { given that } \mathrm{t}=0, \mathrm{x}=2, \frac{d x}{d t}=3 \tag{8marks}
\end{equation*}
$$

Question THREE

a) Use D-operator method to solve the following differential equations leaving the answer with answer with arbitrary constants

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 \mathrm{y}=5 \sin \mathrm{x}
$$

(7marks)
b) Solve completely by D- operator method

$$
\begin{equation*}
\left(D^{2}-4 D+3\right) y=x^{2}+e^{2 x} \text { given that } x=0, y=-1, \dot{y}=0 \tag{13marks}
\end{equation*}
$$

Question FOUR

a) State the Cauchy linear equation.
b) Given that $\mathrm{x}=\mathrm{e}^{z}$, express the differential equation

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\operatorname{Sin}(\operatorname{In} x) \text { in the form } a^{2} \frac{d^{2} y}{d z^{2}}+b \frac{d y}{d z}+c y \\
& =f(z) \text { where } \mathrm{a}, \mathrm{~b}, \text { and } \mathrm{c} \text { are constants. }
\end{aligned}
$$

c) Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\mathrm{y}=\operatorname{Sin}(\ln \mathrm{x})$

$$
\begin{equation*}
\text { given that when } \mathrm{x}=1, \mathrm{y}=10, \frac{d y}{d x}=\frac{19}{2} \tag{12marks}
\end{equation*}
$$

Question FIVE

a) State the lagendre linear equation.
b) Given that $a x+b=e_{z}$., show that

$$
\begin{align*}
& (\mathrm{ax}+\mathrm{b}) \frac{d y}{d x}=(\mathrm{ax}+\mathrm{b}) \mathrm{Dy}=a \frac{d y}{d z} \text { and } \\
& (\mathrm{ax}+\mathrm{b})^{2} \frac{d^{2} y}{d x^{2}}=(\mathrm{ax}+\mathrm{b})^{2} \mathrm{D}^{2} \mathrm{y}=\mathrm{a}^{2}\left(\frac{d^{2} y}{d z}-\frac{d y}{d z}\right) \tag{8marks}
\end{align*}
$$

c) Using b above, solve the differential equation

$$
\begin{equation*}
(3 \mathrm{x}+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 \mathrm{x}+2) \frac{d y}{d x}-36 \mathrm{y}=3 \mathrm{x}^{2}+4 \mathrm{x}+1 \tag{13marks}
\end{equation*}
$$

